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Highlights 
The associations between chronic pain 
(CP) and cognitive impairments are com-
plex, involving multi-level factors such as 
genetic predispositions, physiological 
and psychological alterations, and medi-
cation use. 

CP patients often exhibit ‘older’ brains 
relative to their age, making them 
susceptive to cognitive decline and 
dementia. 
Chronic pain (CP) not only causes physical discomfort but also significantly affects 
cognition. This review first summarizes emerging findings that reveal complex as-
sociations between CP and cognitive impairments, and then presents neuroimag-
ing evidence showing aging-related brain alterations in CP and proposes a 
framework where accelerated brain aging links CP to cognitive impairments. This 
framework explains how CP-related multi-level factors, which either contribute to 
the onset of CP or arise as a result of CP, influence brain aging in linear and nonlin-
ear ways, leading to cognitive impairments and increased dementia risk. Leverag-
ing interpretable machine learning and molecular brain atlases, this framework 
enables the development of cognitive risk assessment indicators and elucidates 
the biological mechanisms underlying cognitive impairments in CP. 
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CP-related factors can lead to brain 
aging through both independent and 
dependent pathways on CP onset, via 
linear and nonlinear processes. 

A brain aging framework can integrate 
multi-level factors to explain the complex 
relationship, elucidate biological mecha-
nisms, and guide clinical interventions 
for cognitive impairments in CP.
Understanding cognitive impairments in CP 
CP, characterized by pain persisting for 3 months or longer, affects over 30% of the global pop-
ulation [1]. Its prevalence varies across age groups, with a high incidence among the elderly [2]. 
Persistent pain and associated disability frequently lead to emotional dysregulation and cognitive 
impairment. While the impact of CP on emotional dysregulation has been extensively elucidated 
[3], its impact on cognitive function has garnered comparatively less attention. With an aging 
global population, the intersection of CP and cognitive impairment warrants greater attention. In-
dividuals with CP frequently report deficits in various cognitive domains, including attention, 
memory, executive functions, cognitive flexibility, and psychomotor skills [4]. One explanation 
for these impairments in CP is the limited cognitive resource theory (see Glossary), which 
posits that individuals with CP have limited cognitive resources available for processes beyond 
managing pain [4–9]. However, emerging findings suggest that the relationship between cogni-
tive impairments and CP is more complex than this theory alone can explain. For example, cog-
nitive deficits persist even after pain relief [10,11], and only certain CP conditions are associated 
with heightened cognitive decline and increased dementia risk [12–14]. Furthermore, CP involves 
multiple factors that can impact cognitive function, including genetic predispositions, physiolog-
ical and psychological alterations, and medication use [15–20]. Although rodent studies have 
provided valuable insights into the neural mechanisms (see review in [4]), there is currently no 
unified framework that integrates these multi-level factors and explains the complex relationship 
between CP and cognition in humans. 

Increasing evidence indicates that CP can lead to cognitive impairments by inducing structural 
and functional alterations in the brain [21,22]. Individuals with CP experience volume loss and 
dysfunction not only in regions that are usually activated in receiving nociceptive stimuli, such 
as thalamus, anterior cingulate cortex, and primary somatosensory cortices, but also in areas 
closely related to cognitive function like the prefrontal cortex and hippocampus [21,23–25]. Cru-
cially, these changes are exacerbated by age, suggesting a connection between aging-related 
brain alterations (i.e., brain aging; see  Box 1) and cognitive decline in CP. Emerging studies
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Box 1. Brain aging and its neuroimaging biomarkers 

Brain aging can generally be seen as the time-related deterioration of the brain, accompanied by a progressive loss of cog-
nitive function and an increasing vulnerability of neurodegenerative disorders. This process involves multi-scale biological 
transformations in the brain, including changes in molecules, cells or synapses, neural circuits, morphological structures, 
and large-scale functional networks. It is clear that humans do not experience brain aging at the same rate, with pro-
nounced differences in both internal (i.e., biological changes) and external (i.e., neuropsychological changes) manifesta-
tions. The rate of brain aging can be influenced both positively and negatively by various factors, including genetic 
predispositions, psychological and psychosocial factors, lifestyle choices, and disease-related conditions, resulting in an 
older or younger brain. This has motivated extensive research efforts to measure aging from a biological perspective, 
aiming to identify ‘aging biomarkers’ that can accurately predict cognitive impairments. 

Using neuroimaging techniques, substantial studies have unveiled aging-related changes in brain structure, function, and 
cerebral metabolic levels. The human brain shrinks with age, with significant volume loss found in the prefrontal cortex, in-
ferior temporal cortex, hippocampus, and entorhinal cortices [21,124]. Older adults have decreased integration of brain 
white matter, particularly in the prefrontal white matter tracts [125]. Significant alterations in brain function with age include 
higher inter-network resting-state functional connectivity [126]. Furthermore, aging is also accompanied by decreased 
brain glucose metabolism across the whole brain [127]. These neuroimaging-derived changes have been associated with 
multiple domains of cognitive ability, suggesting their potential as ‘aging biomarkers’ that can inform the risks of cognitive 
impairments. 

Large-scale biobank initiatives are driving the creation of brain charts [38]. These charts are designed to characterize the 
normative trajectory of human brain development and aging using neuroimaging data from large numbers of healthy indi-
viduals over their lifespan. This approach facilitates the comparison of an individual’s brain to the expected benchmarks for 
their age and sex, enabling the assessment of whether their brain is developing or aging in a typical manner. Any deviations 
from the normative trajectory of brain aging warrant further investigation to potentially avert neurodegenerative conditions. 
Overall, brain charts not only mark neurodevelopmental milestones but also serve as a valuable resource for assessing 
individual’s risk of cognitive impairments. 

Glossary 
Biobank: a comprehensive database  
from a large number of participants, 
typically including demographic 
information, health record, lifestyle, 
neuroimaging data, multi-omics data, 
and genetic information. 
Brain aging: refers to the gradual 
structural and functional deterioration of 
the brain with advancing age, 
accompanied by an increased risk of 
neurodegenerative diseases and 
cognitive declines across multiple 
domains, such as memory, attention, 
and decision-making speed. It can be 
accelerated or decelerated by genetic, 
lifestyle, and environmental factors, 
leading to individual differences in the 
rate of cognitive decline. 
Cognitive Assessment Battery: 
assesses a wide array of cognitive 
domains, such as memory, attention, 
executive functions, and risk decision 
making. Different assessment batteries 
are specifically designed according to 
their intended purposes. 
Feature space: refers to the vector 
space spanned by all the variables used 
to model a problem. In brain age studies, 
the feature space is typically defined as 
the vector space where each brain voxel 
or area is represented as an individual 
vector. 
General genetic factor: a common 
genetic architecture underlying multiple 
phenotypes that provides profound 
insights into the intricate relationships 
among diverse phenotypes. This factor 
can be elucidated through the 
integration of genomic data and 
structural equation modeling. 
Genetic pleiotropy: a pervasive  
phenomenon throughout the human 
genome, where a single gene or genetic 
variant influences multiple traits. 
GWAS: a research approach involves 
identifying genetic variants that are 
statistically associated with the risk for a 
disease or a trait. 
Limited cognitive resource theory: a 
theory hypothesizes that cognitive 
deficits in CP stem from pain competing 
with other attention-demanding stimuli 
for limited cognitive resources. Ongoing 
pain may disrupt top-down attentional 
control mechanisms that are essential 
for filtering out irrelevant stimuli, resulting 
in impaired task performance. 
MCP: refers to the presence of 
persistent pain occurring in multiple sites 
of the body. Nearly half of individuals with 
CP report experiencing this condition. It
have demonstrated that individuals with CP have ‘older’ brains for their age [21,25,26], exhibiting 
characteristics typically seen in older individuals, making them more susceptible to memory 
loss and dementia. Therefore, brain aging may serve as a pivotal link between CP and cognitive 
impairments.

In this review, we propose an integrative framework in which altered brain aging connects CP and 
cognitive impairments. First, we summarize the complex associations between CP and cognitive 
impairments from recent research findings, which guide the development of our proposed frame-
work. Second, we review emerging evidence from neuroimaging studies, indicating that the brain 
aging process in CP deviates from the normative trajectory and exhibits accelerated brain aging. 
Third, we present our brain aging framework, where CP accelerates brain aging through the 
multi-level factors, aiming to elucidate its complex associations with cognitive impairments. Fi-
nally, we discuss the biological and translational implications of the brain aging framework for CP. 

Complex associations between CP and cognitive impairments 
Although CP has been associated with cognitive impairments for decades, researchers 
increasingly recognize the complexity of their relationship. In addition to CP-related factors 
like pain intensity, coping strategies, medication use, and mental and physical health issues 
[9,15,17–20], recent studies have added further intricacy to the relationship between CP and 
cognitive impairments (Figure 1).

Two key properties of CP complicate its relationship with cognitive impairments: heterogeneity 
and co-occurrence (Figure 1A,B). CP is highly heterogeneous [27], with each type characterized 
by distinct variations in genetic predisposition, etiology, and pain locations. This variability sug-
gests no universal associations between CP and cognitive impairments. For example, a study ex-
amining nine types of CP revealed discrepancies in cognitive decline, with limb pain showing 
more pronounced cognitive deterioration [14]. A prospective study indicated that chronic knee
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is commonly associated with greater 
pain intensity, higher levels of disability, 
and a higher likelihood of developing 
associated conditions like depression 
and anxiety. 
Mendelian randomization (MR): a 
method that infers the causal effects of 
an exposure (e.g., potential risk factors) 
on a health outcome by using genetic 
variants associated with the exposure. 
Molecular brain atlases: a series  of  
spatial distribution maps of molecules in 
the brain, derived from positron emission 
tomography scans, tissue samples from 
donated brains, or histological sections. 
These maps can be aligned into spatial 
patterns of macro-scale brain signatures 
derived from neuroimaging data for 
statistical comparison. 
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Figure 1. Complex associations between chronic pain (CP) and cognitive impairments. (A) Associations exhibit 
significant heterogeneity across different types of CP, both in their presence and in the magnitude of these associations. 
The heterogeneity displayed in the diagram references earlier studies on the associations between CP and dementia 
[12,13]. (B) The presence of multiple coexisting CP sites on the body amplifies these associations, with multiple co-
occurring CP sites (MCP) cohorts displaying stronger links to cognitive impairments compared with single-site CP cohorts. 
The risk of dementia displayed in the diagram references an earlier study on the associations between MCP and dementia 
[21]. (C) The associations are inherently shaped by shared genetic variants. Some genetic variants/genes are linked to 
both CP and cognitive function or dementia. (D) The associations gradually elevate with the aging process, as CP cohorts 
demonstrate a nonlinear increase in the severity of cognitive impairments compared with healthy controls (HC) as they 
age. Accelerated memory decline in CP displayed in the diagram references an earlier study that models the trajectory of 
cognitive function with age [21].
pain, but not chronic back pain, was associated with an elevated risk of dementia [12]. Furthermore, 
a meta-analysis has shown that patients with trigeminal neuralgia have the highest risk of dementia, 
followed by those with osteoarthritis, migraine, and chronic non-cancer pain [13]. Additionally, indi-
viduals with multiple co-occurring CP sites (MCP) show more severe cognitive impairments across 
broader domains compared with those with single-site CP [21,28]. MCP significantly raises the risk 
of dementia, with each additional pain site further elevating this risk [21,29].

Genetic predispositions influence the association between CP and cognitive functioning 
(Figure 1C). The general genetic factor across 24 types of CP, which encapsulates their com-
mon genetic architecture, has been reported to be linked to cognition and intelligence [30].
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Specific CP types, like chronic musculoskeletal pain, are linked to genetic variants affecting fluid 
intelligence, prospective memory, and mental response speed [30,31]. Genetic pleiotropy anal-
yses revealed numerous shared variants between migraine and intelligence [16]. Furthermore, 
genetic predispositions shape the impact of CP on neurodegenerative diseases. Evidence from 
Mendelian randomization (MR) analyses has revealed a genetic susceptibility of migraine pa-
tients to Alzheimer’s disease (AD) [32]. 

Cognitive issues in CP vary with advancing age (Figure 1D) [21,28,33–36]. For instance, a 10-year 
longitudinal study found a 9.2% faster rate of memory decline and a 7.7% higher likelihood of de-
veloping dementia in CP cohorts [33]. Although cognitive decline in CP has usually been 
assessed by linear models, recent research suggests a nonlinear trend in change trajectory. A 
study modeling cognitive decline trajectories revealed that individuals with CP tend to exhibit ac-
celerated declines in various cognitive domains, notably memory, around the age of 60 years [21]. 
Another study tracking pain persistence and cognitive function over 18 years showed that as the 
CP duration lengthens, the rate of cognitive decline initially speeds up, then decelerates, and 
eventually reaches a stable state [36]. These findings suggest that the adverse effects of CP on 
cognitive function accumulate gradually over time, particularly as individuals age. 

Altered brain aging: a potential bridge between CP and cognitive impairments 
Brain aging is well-documented to cause cognitive decline and is a major risk factor for neuro-
degenerative diseases [37–39]. Additionally, it mediates the effects of various risk factors on 
age-related cognitive decline and diseases [40]. CP also accelerates brain aging, with CP co-
horts showing brain characteristics typically observed in healthy controls of advanced age 
across multiple neuroimage modalities, including reduced grey matter volume and white matter 
integration [21,23,41–43], diminished functional segregation [44], and decreased glucose me-
tabolism [45]. These findings suggest that brain aging may connect CP with cognitive impair-
ments, prompting extensive brain age research aimed at understanding accelerated brain 
aging in CP and precisely quantifying how individuals with CP deviate from the normative 
brain aging trajectory. 

Brain age studies center on two key concepts: chronological age and brain age. Chronological 
age indicates the number of years a person lives, while brain age reflects the biological aging 
rate of the brain. The brain age model establishes the normative brain aging trajectory based 
on aging rate of a healthy population (see a recent review [46]). Specifically, it uses machine learn-
ing to encode chronological age into a neuroimaging-based brain feature space [46,47]. The 
model then predicts brain age in new individuals based on their brain features. By subtracting 
chronological age from predicted brain age, brain age gap (BAG) quantifies deviation degree 
from normative brain trajectory due to altered aging rate, with a positive BAG indicating acceler-
ated brain aging compared with the healthy population. 

Early studies identified accelerated brain aging in various types of CP, including knee pain, hip 
pain, low back pain, osteoarthritis, migraine, post-traumatic headache, and trigeminal neuralgia 
[25,26,48–57]. However, consistent findings have only been replicated in some types of CP, 
with mixed results in others. The most consistent accelerations have been observed in chronic 
knee pain and osteoarthritis [25,49–51,53,55–57]. Conversely, findings for chronic back pain 
have been less consistent, with some studies showing no significant acceleration [55]. Many 
factors contribute to this inconsistency, including variations in sample sizes, demographic differ-
ences, and the machine learning methods used. Large-scale biobank level data help overcome 
these limitations and suggest that acceleration is not CP-general but varies based on the type of 
CP. A recent study using over 5000 samples from the UK Biobank found significant brain aging
4 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx
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acceleration in chronic knee pain and knee osteoarthritis, but not in chronic back pain. Similarly, 
another study also found accelerated brain aging in individuals with chronic knee pain, but not in 
those with chronic back pain [49]. These results align with behavioral studies indicating that 
chronic knee pain, rather than chronic back pain, elevates the risk of dementia [12]. Additionally, 
although some brain age studies suggest variations in the level of accelerated brain aging across 
CP types, direct statistical comparisons among multiple types are limited, highlighting the need 
for further investigation [25,55]. 

The strong association between brain aging and CP is further highlighted by links between BAG 
and pain-related impacts. Individuals with CP who experience higher pain intensity, disability, and 
interference tend to exhibit elevated BAG levels [53,56,58,59]. Risk/protective factors for CP also 
intersect with BAG, as evidenced by findings that individuals with CP who have higher levels of 
pain catastrophizing, a key risk factor for CP, exhibited greater BAG [60]. In contrast, CP with 
strong projective factors demonstrated significantly lower BAG compared with those at higher 
risk [61]. Additionally, pain interventions also affect BAG. Both pharmacological and non-
pharmacological pain treatments have been demonstrated to help slow down and even reverse 
the increased BAG in CP cohorts [26,50]. 

A robust connection between brain aging and cognitive function has been identified in CP. A re-
cent study showed that an increased BAG was associated with poorer memory in knee osteoar-
thritis patients without obvious cognitive impairments [25]. Furthermore, a higher baseline BAG 
predicted faster memory decline and a higher risk of dementia over 5 years in knee osteoarthritis 
patients, suggesting that individuals with CP who exhibit older brains may be more susceptible to 
cognitive impairments. Although more evidence and external validation in varied settings are 
needed to explore the relationship between BAG and other cognitive deficits in CP, these findings 
highlight the contribution of accelerated brain aging to cognitive impairments in CP. 

In summary, CP disrupts the natural trajectory of brain aging, leading to accelerated brain aging, 
with the rate influenced by CP heterogeneity, severity and disability, risk/protective factors, and 
pain management. Furthermore, accelerated brain aging predicts cognitive impairments in CP, 
including those without observable cognitive issues. Collectively, brain aging appears to serve 
as a bridge connecting CP and cognitive impairments. 

Brain aging framework for cognitive impairments in CP 
Building on the preceding findings, we introduce a brain aging framework that elucidates how 
CP-related multi-level factors may lead to cognitive impairments through their effects on brain 
aging processes. This framework holds promise in elucidating the complex relationship between 
CP and cognitive impairments, as well as enhancing understanding of the biological mechanisms 
underlying this association. 

The effects of CP-related factors on brain aging 
In the brain aging framework, accelerated brain aging mediates the detriments of a set of CP-
related factors (Table 1) on cognitive function, leading to cognitive decline and elevated risk of de-
mentia. These factors affect brain aging through different ways (Figure 2A and Box 2). Risk factors 
for CP, such as genetic predispositions, neuroinflammation, and early adversity, can directly ac-
celerate brain aging, independently of CP itself. They begin to distort the brain aging trajectory be-
fore the onset of CP. Factors arising from persistent pain, which primarily include physiological 
changes, inappropriate coping strategies, medication use, and both mental and physical health 
issues, start to influence the brain aging trajectory following the onset of CP. Notably, certain fac-
tors serve both as risk factors and as dependent factors for CP (Table 1). For instance,
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Table 1. Factors linked to both CP and brain aging, and how they affect brain aginga 

Way Factor Manifestation in CP Potential molecular mechanism influencing 
brain aging 

Refs 

Risk factor for CP 
(directly accelerate 
brain aging, 
independently of CP 
itself) 

Genetic 
predisposition 

CP shared risk SNPs and genes with brain aging 
CP shared biological processes with brain aging 

Shared genes can influence brain aging by 
regulating cation homeostasis, neuronal 
development, neurogenesis, and synaptic 
plasticity 

[25,30,31] 
[74,78,80] 

Brain-derived 
change 

Decrease BDNF level 
Oxidation stress 
Dysregulated energy metabolism 

Reduced BDNF levels weaken the capacity 
to support neuronal survival and 
differentiation, as well as to regulate 
synaptogenesis, synaptic transmission, and 
plasticity 
Excessive oxidation levels cause lipid 
peroxidation of neuronal cell membranes, 
protein inactivation, and DNA damage, 
accelerating the decline in neuronal 
function 
Dysregulated energy metabolism disturbs 
fuel supply and energy conservation 
necessary to support cell growth and 
differentiation, protein synthesis, and 
neuronal function 

[100,101] 
[18,88] 
[18,102] 

Musculoskeletal 
injury 

Elevated sclerostin secretion 
Bone marrow lesions 

Osteocyte-derived sclerostin crosses the 
blood–brain barrier, impairing 
dendritogenesis and synaptic plasticity 
through dysregulation of Wnt–β-catenin 
signaling 
Bone marrow is pivotal in regulating 
systemic immunity that influences brain 
aging process. Lesions in the bone marrow 
contribute to immune senescence, hindering 
cerebral Aβ clearance and exacerbating 
neuroinflammation 

[69] 
[70] 

Early adversity Experiencing early adversity Early adversity can undermine mitochondrial 
capacity to coordinate effective cellular 
stress responses, reducing the brain’s 
resilience against accelerated aging 

[103,104] 

CP-dependent 
factor (influence the 
brain aging trajectory 
following the onset of 
CP) 

Medication Opioid use Opioids can exacerbate oxidative 
imbalance, induce neuroinflammation, and 
impair neurogenesis 

[17] 

Coping strategy Smoking 
Alcoholism 

Both smoking and alcoholism can 
exacerbate oxidative imbalance, 
compromise blood–brain barrier integrity, 
and promote neuroinflammation 

[105,106] 
[106,107] 

Disease Cardiovascular diseases 
Chronic fatigue syndrome 

Cardiovascular diseases may induce 
deleterious pulsatile blood flow and 
compromise blood–brain barrier integrity, 
subsequently leading to tau upregulation, 
synaptic dysfunction, and 
neuroinflammation 
Chronic fatigue syndrome may induce 
decreased bioenergetics and increased 
oxidation due to mitochondrial 
dysfunction 

[108,109] 
[110,111] 

Social participation Lack of social participation Reduced social participation may lead to 
feelings of isolation and chronic stress, 
thereby inducing neurotoxicity through 
hyperactivation of the HPA axis 

[112,113] 

Endocrine change Elevated cortisol level Cortisol suppresses neurogenesis, inhibits 
synaptogenesis, and results in atypical 
dendritic branching 

[114,115]
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Way Factor Manifestation in CP Potential molecular mechanism influencing
brain aging

Refs

Risk factor for CP & 
CP-dependent 
factor 

Neuroinflammation Increased level of cytokine, inflammation, and 
glial overactivation 

In neuroinflammation, microglia are primarily 
activated to release proinflammatory 
cytokines such as TNF-α, IL-1β, and IL-6, 
with astrocytes also contributing under 
certain conditions. These cytokines can 
induce neuronal dysfunction and cell death 

[87,116] 

Lifestyle Unhealthy diet 
Short sleep duration 
Insufficient physical activity 

An unhealthy lifestyle can diminish the 
protective effects of BDNF secretion, 
antioxidant enzymes, and the cerebral 
glymphatic system, thereby increasing 
susceptibility to accelerated brain aging 

[117,118] 
[117,119] 
[117,120] 

Psychological 
change 

Depression 
Anxiety 
Psychological stress 

Poor psychological health may induce 
dendritic retraction, inhibit neurogenesis, 
and promote neurotoxicity through 
hyperactivation of the HPA axis 

[19,121] 
[19,121] 
[122,123] 

a BDNF, brain-derived neurotrophic factor; HPA, hypothalamic-pituitary-adrenal; IL-1β, interleukin-1β; IL-6, interleukin-6; SNPs, single nucleotide polymorphisms; TNF-α, 
tumor necrosis factor.
neuroinflammation not only increases the risk of developing CP but also tends to worsen after the 
onset of CP, thereby magnifying its impact on brain aging.

Moreover, the brain aging process involves both continuous and step-wise changes [62]. Certain 
CP-related factors, such as poor sleep, may rapidly accelerate brain aging in a step-wise manner 
[63]. Continuous changes in brain aging are characterized by both linear and nonlinear influences 
[38,62], primarily driven by various factors that impact aging in a stage-specific manner [20,64]. 
Among CP-related factors, some continuously affect brain health. While their detrimental impact 
may be nearly linear within specific life stages, it varies across different periods of life. This variabil-
ity is evident in factors like inflammation, depression, smoking, alcohol use, and some comorbid-
ities [65–68]. To account for these observations, the framework decomposes the overall impact 
of CP-related factors into three types of acceleration effects (Figure 2B). The first is a continuous 
linear effect that consistently accelerates brain aging with a relatively stable rate. The second is a 
continuous nonlinear effect, marked by an unstable rate that may fluctuate due to age or specific 
life events. The third type is a step-wise effect that triggers a strong but not continuous acceler-
ation in brain aging. 

How does this framework explain the complex associations? 
By integrating various factors, the framework can explain many of the complex associations be-
tween CP and cognitive impairments. First, it accounts for the effect of the heterogeneity of CP. 
The rate of brain aging is determined by the combined influence of CP-related multi-level factors, 
which vary across different CP types. Genetic predispositions and other risk factors show a high 
degree of specificity to particular types of CP. Consequently, CP types with greater overlaps with 
these factors tend to exhibit a faster rate of brain aging and more severe cognitive decline. For in-
stance, knee osteoarthritis patients have substantial risk genes, musculoskeletal injury, and dys-
regulated energy metabolism, which can accelerate brain aging and make patients particularly 
susceptible to cognitive decline [18,25,69–71]. Factors arising from persistent pain, such as men-
tal health problems, inappropriate strategies to relieve pain, and opioid medications, are common 
across CP types, since pain sensation is a primary trigger for them. However, the prevalence of 
these factors varies [17,72], with CP types associated with higher prevalence tending to show 
a greater degree of accelerated brain aging. For example, neuropathic CP leads to more
Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx 7
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Figure 2. Schematic representations of how the brain aging framework links chronic pain (CP) and cognitive 
impairments. (A) The framework posits that brain aging bridges CP and cognitive impairments, supported by evidence 
that various CP-related factors can accelerate brain aging, leading to higher brain age gap (BAG) in CP cohorts compared 
with healthy controls (HC). These factors are categorized into two sets: one accelerating brain aging before the onset of 
CP, independently of CP itself, and the other, triggered by CP, accelerating brain aging after the onset of CP. (B) Three 
types of acceleration effects of CP on brain aging. CP-related factors can induce continuous linear (left), continuous 
nonlinear (middle), or step-wise acceleration effects (right) on brain aging before (top) or after (bottom) the onset of CP.
pronounced brain aging compared with non-neuropathic CP types [55]. This could be associated 
with higher pain intensity, increased incidence of comorbid depression, and reduced physical ac-
tivity in neuropathic CP relative to non-neuropathic types [72,73]. 

The framework also explains why MCP is related to more severe cognitive impairments. Hippo-
campal aging has been shown to mediate cognitive decline in MCP [21]. Importantly, each addi-
tional pain site accelerated hippocampal aging by over a year, linking more pain sites to greater 
hippocampal atrophy and faster cognitive decline. The reasons for accelerated brain aging in 
MCP may be multifaceted. First, with an increase in the number of pain sites, individuals are sub-
jected to a greater array of factors that accelerate brain aging. Second, compared with single-site 
CP, risk genes of MCP are more extensively expressed in the brain, providing a greater number of 
genes potentially involved in regulating brain aging [74]. Third, MCP exacerbates the adverse
8 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx
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Box 2. Two ways that CP-related factors affect brain aging 

Several factors influencing CP can also accelerate brain aging before the onset of CP. Genetic predispositions play a sig-
nificant role, as certain genes can affect neural plasticity, inflammation, and pain sensitivity. These genetic factors can pre-
dispose individuals to both CP and accelerated brain aging [25,89]. For instance, the RUNX2 gene, crucial in osteoarthritis 
development, also regulates the acceleration of brain aging [89]. Neuroinflammation is another critical factor. Chronic low-
grade inflammation in the brain can precede the onset of CP. Proinflammatory cytokines and activated microglia can dam-
age neural tissues, leading to both pain sensitization and cognitive decline [87,116]. Musculoskeletal injuries serve as a 
source of CP, and recent studies suggest that the molecular determinants of bone injury also regulate the brain [69,70]. 
Brain-derived neurotrophic factor (BDNF) is crucial for synaptic plasticity and neuroprotection. Altered levels of BDNF 
can lead to maladaptive neuroplasticity, increasing the risk of both CP and cognitive impairment [100,101]. Early adversity 
can have long-lasting effects on the brain, altering the development of neural circuits involved in pain processing and cog-
nitive function. This can increase susceptibility to both CP and accelerated brain aging [103,104]. Additionally, lifestyle fac-
tors such as inadequate physical activity, poor diet, and insufficient sleep can negatively impact brain health and increase 
the risk of both CP and brain aging [117,119,128]. 

Once CP has developed, several factors can exacerbate brain aging. Mental health issues such as depression and anxiety 
commonly co-occur with CP and can accelerate brain aging [121]. Depression and anxiety can also exacerbate pain per-
ception and contribute to cognitive decline [129]. Coping strategies also play a crucial role. Ineffective coping strategies, 
such as alcohol abuse, smoking, or catastrophizing, can worsen CP and contribute to stress, further accelerating brain 
aging [105,107]. Social factors are also important. Lack of social participation can increase the risk of both CP and cog-
nitive decline. Social isolation can lead to mental health issues and reduced physical activity, both of which are detrimental 
to brain health. Also, CP has the potential to change brain aging trajectory by disrupting the endocrine system and hor-
mones, such as by increasing cortisol levels [114,115]. Comorbid conditions, such as cardiovascular disease [108], could 
serve as a mediator between CP and brain aging. These disorders can lead to systemic inflammation and vascular issues, 
affecting both pain and brain health [109]. 
effects of factors arising from persistent pain, such as more severe depressive symptoms and 
higher prevalence of cardiovascular diseases [75–77]. These factors lead to each additional 
pain site not only increasing the rate of brain aging acceleration before CP onset but also enhanc-
ing the rate after onset, seriously distorting the brain aging trajectory. 

The genetic association between CP and cognitive impairments may also be explained by brain 
aging. Many genetic loci associated with CP are expressed in the brain, influencing its structure 
and function [25,30,31]. These genetic loci can impact cognitive function by regulating the brain 
aging process, which is also highly heritable [78]. For example, the gene DCC, crucial in nervous 
system development, has shown a strong association with MCP [74]. DCC expression regulates 
synaptic function and plasticity in the adult brain, influencing not only CP but also brain aging 
and cognitive functions such as memory formation [79]. In addition to synaptic plasticity, the risk 
genes for CP are also involved in several other biological processes that influence cognitive function 
via regulating brain aging, such as neurogenesis and neuron differentiation [74,78,80]. 

This framework further clarifies the impact of the aging process on the relationship between CP 
and cognitive impairments. The gradual increase in cognitive impairments with age in CP can 
be attributed to the persistent acceleration effect of CP on brain aging, as some CP-related fac-
tors that impact cognitive function consistently exert detrimental effects on the brain [65–67]. This 
is evidenced by brain age studies showing a significant increase in BAG during follow-up in CP 
cohorts [25]. Further support comes from MR studies indicating that accelerated thalamic atro-
phy with age mediates the detrimental effects of CP on AD [32]. Additionally, a study character-
ized the brain aging trajectories of CP and demonstrated a continuous yet nonlinear detrimental 
effect of CP on hippocampal aging [21]. 

Biological insights from the framework 
In addition to its clinical relevance (Figure 3A, see ‘Future study directions guided by the 
framework’), the proposed brain aging framework offers biological insights beyond merely
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Figure 3. The brain aging framework facilitates understanding of cognitive impairments in chronic pain (CP) from multiple scales. (A) Estimate and clinical 
utility of brain aging in CP. Brain age gap (BAG) proves valuable in predicting cognitive risks, identifying unknown risk factors for cognitive impairments, and assessing the 
efficacy of cognitive decline prevention strategies in CP. Decoding (B) macro-scale, (C) micro-scale, and (D) genetic mechanism of cognitive impairments in CP. 
Interpretable machine learning is used to decode the macro-scale mechanism that characterizes morphological or functional contributions of the brain to BAG. 
Molecular brain atlases detailing the spatial distribution of molecules in the brain are leveraged to characterize micro-scale mechanism by annotating macro-scale 
regional contributions. Pleiotropic genes that influence both CP and BAG can be identified based on their genetic architecture. Then, the locations where pleiotropic 
genes exert their effects can be further elucidated using the expression data of these genes across various tissues. As shown in the diagram, a pleiotropic gene 
associated with CP and BAG affects CP through its expression in the hippocampus, thalamus, and middle frontal gyrus, and impacts BAG through its expression in 
the hippocampus, orbitofrontal cortex, and inferior frontal gyrus. Figure created with BioRender.com. Abbreviations: Hipp, hippocampus; IFG, inferior frontal gyrus; 
MFG, middle frontal gyrus; OFC, orbitofrontal cortex; TH, thalamus. 
explaining the complex associations between CP and cognitive impairments (Figure 3B–D). 
Brain aging spans multiple spatial scales, allowing the framework to deliver insights on 
both macro- and micro-scale levels, thus enhancing the understanding of cognitive impair-
ments in CP and contributing to its prevention. 

Interpretable machine learning is increasingly used to estimate macro-scale BAG spatial patterns 
that quantify the neuroimaging-derived (e.g., grey matter volume) contribution of various brain 
areas to BAG [46]. Identifying brain areas with strong contributions to BAG helps predict cognitive
10 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx
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decline and implement early and targeted interventions (Figure 3B). Interpretable machine learn-
ing has revealed distinct macro-scale BAG spatial patterns across CP types, highlighting their 
heterogeneous aging patterns [25,52]. For example, a spatial pattern, including the orbitofrontal 
cortex and superior frontal gyrus, was found to significantly contribute to the increased BAG in 
migraine patients [52]. Another study identified a distinct spatial pattern in knee osteoarthritis 
patients, revealing significant contributions of the hippocampus, thalamus, orbitofrontal cortex, 
inferior frontal gyrus, and middle frontal gyrus to the increased BAG [25]. 

Micro-scale biological insights can be further obtained by annotating macro-scale BAG spatial 
patterns using various categories of molecular brain atlases, such as  ‘Neuromaps’ and 
‘Allen Brain Map’ repository (Figure 3C) [81,82]. These repositories allow researchers to link var-
iations in regional contributions to BAG with variations in the distribution of various molecular 
components in the brain, such as gene expression, cell types, myelination, cytoarchitecture, me-
tabolism, neurotransmitter receptors, and transporters [83]. This enables the identification of spe-
cific molecular mechanisms underlying brain aging and provides a comprehensive understanding 
of how different biological factors contribute to cognitive decline in CP. For example, using the 
Allen Brain Map repository, a study found that microglial cells, astrocytes, synaptic structures, 
and neurodevelopment-related biological processes played key roles in accelerated brain aging 
in knee osteoarthritis patients [25]. Importantly, the associations between these molecular mech-
anisms and cognitive impairments have been confirmed by previous preclinical studies [84], 
underscoring the potential of multi-scale decoding to uncover the underlying mechanisms of cog-
nitive impairments in CP based on the brain aging framework. 

With the increasingly available genome-wide association studies (GWAS) of different CP types 
[30,74], decoding genetic determinants of accelerated brain aging in CP is also beneficial for un-
derstanding the biological mechanisms as well as identifying potential drug targets that can both 
reduce CP symptoms and prevent cognitive impairments (Figure 3D). For example, genetic plei-
otropy analysis identified the risk gene SLC39A8 shared by knee osteoarthritis and BAG [25]. This 
gene aids in bone formation and cartilage catabolism and also affects brain deterioration, 
explaining why knee osteoarthritis patients exhibit accelerated brain aging and positioning 
SLC39A8 as a potential intervention target for both knee osteoarthritis and related cognitive im-
pairments. A previous study demonstrated accelerated hippocampal atrophy in MCP, yet the un-
derlying causes remain unclear [21]. Using GWAS data, recent research has linked MCP to the 
upregulation of the ECM1 gene in the hippocampus [85]. This gene’s ability to disrupt the 
blood–brain barrier, a crucial factor in brain aging, positions it as a potential risk gene for both 
MCP and accelerated brain aging. 

In summary, the brain aging framework holds great promise for understanding cognitive impair-
ments in CP by offering an integrative biological profile that links genes, molecular mechanisms, 
and morphological changes with BAG. 

Framework rationale and justification: specificity, necessity, and falsifiability 
While accelerated brain aging has been observed also in other condition [86], the proposed 
framework targets CP for key reasons. First, CP prevalence increases with age [2] and  shares  
biomarkers with brain aging, such as neuroinflammation [87], oxidative stress [88], and genetic 
risk factors [25,89]. This supports the exploration of CP and cognitive impairment through the 
lens of brain aging. Second, brain aging is a heterogeneous process [90]. Phenotypic and genetic 
evidence suggests that although accelerated brain aging is present in multiple disorders, the un-
derlying mechanisms vary [86]. By integrating machine learning, molecular brain atlases, and ge-
netic data, the framework can identify CP-specific mechanisms (e.g., a distinct brain aging
Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx 11
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pattern with molecular and genetic basis) underlying cognitive impairments. While brain aging 
mediates the relationship between CP and cognitive impairment, it might also indicate a gen-
eral susceptibility to various brain disorders. Future research is needed to support this 
broader hypothesis. 

In addition to the limitations of existing theories, the significant heterogeneity within CP also un-
derscores the necessity of the brain aging framework. The substantial heterogeneity across 
types of CP suggests that similar cognitive impairments may arise from diverse patterns of 
brain alterations [27]. By integrating machine learning algorithms and large-scale neuroimaging 
datasets, brain age offers a single quantifiable measure suitable for investigating such hetero-
geneous conditions, serving as a biomarker for risk prediction and prevention evaluation. 
Moreover, CP involves numerous psychological and physiological factors that lead to cognitive 
impairment [15–20]. Any suitable alternative framework would need to integrate them. Given 
that most of these factors are closely associated with accelerated brain aging (as shown in 
Table 1), a brain aging-centered framework is essential for capturing the complex impact of 
CP on cognition. 

It is important to acknowledge that the framework, though based on multi-faceted evidence, does 
not imply that accelerated brain aging is the sole explanation for cognitive impairments in CP. The 
question remains whether significant cognitive deficits could persist in CP patients even after re-
versing brain aging acceleration. If such conditions do exist, further exploring other factors, inde-
pendent of brain aging, that contribute to these persistent cognitive impairments is vital. 

Future study directions guided by the framework 
By leveraging advanced imaging techniques, computational approaches, and multidimensional 
datasets, the framework can guide future studies to better understand biological mechanisms 
and improve clinical practice. 

Biological aging across organs 
Most types of CP, probably except for headaches and trigeminal neuralgia, receive signals 
(e.g., nociceptive signals, molecules) from outside the brain [91] and are often comorbid with 
diseases affecting other organs [92]. The brain is regulated by various messengers from 
other organs, with homeostasis maintained through stable interactions between organs 
[93,94]. Recent studies on multi-organ interactions suggest that this regulatory effect may 
manifest during the aging process. Dysfunctions in other organs, such as accelerated aging, 
can influence the brain’s aging trajectory, with these effects potentially emerging several 
years beforehand [95,96]. Therefore, future research should assess the interaction of the 
aging processes between the brain and other organs in CP to better understand the mecha-
nisms underlying cognitive impairments. 

Reverse translation opportunities for cognitive impairments 
The framework creates valuable opportunities for reverse translation. Brain aging-related regions, 
cells, neurotransmitters, and genes identified by the framework (Figure 3B–D) can inspire animal 
studies to elucidate the detailed biological mechanisms underlying cognitive impairments in CP 
and discover new therapeutical targets or repurpose existing drugs to mitigate cognitive decline. 
For example, the identification of SLC39A8 as a shared risk gene between knee osteoarthritis and 
BAG [21] can drive animal studies to investigate the causal role of SLC39A8 in cognitive impair-
ments associated with CP using gene editing techniques. Additionally, animal models could as-
sess whether drugs targeting downstream proteins of SLC39A8 might have therapeutic effects 
on cognitive impairments.
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Outstanding questions 
Which cognitive domains, aside from 
memory, are associated with BAG in 
CP? Does BAG elucidate changes in 
CP as a general factor across all cogni-
tive functions, or is it linked to alter-
ations in specific cognitive domains? 

Are there factors that both elevate the 
risk of CP and delay brain aging, lead-
ing to certain types of CP, such as 
chronic back pain, not being linked to 
accelerated brain aging and elevated 
dementia risks? 

Compared with brain age models 
that rely on unimodal neuroimaging, 
can models based on multimodal 
neuroimaging capture a broader 
range of cognitive domains and 
more accurately predict the risk of 
cognitive impairments in CP? 

Early studies have highlighted the effects 
of pain treatment, psychological 
interventions, and lifestyle modifications 
in slowing brain aging in CP. Could 
brain aging be slowed by directly 
modulating the brain, such as through 
neuromodulation techniques that deliver 
stimulus with biological significance to 
the brain? 

Gender differences not only intersect 
various aspects of CP but also play a 
significant role in the aging process. 
Does gender moderate the impact of 
CP-related factors on brain aging? 
Additionally, which CP-related factors 
that influence brain aging are most 
sensitive to gender modulation?
Brain age model-inspired interventions of cognitive impairments 
Future research can leverage this framework to inform the development of effective interventions 
aimed at mitigating and preventing cognitive impairment in CP. Currently, research in this field, es-
pecially longitudinal studies, remains limited [50]. Longitudinal studies are essential for assessing 
the efficacy of lifestyle interventions and pharmacological treatments in reducing BAG and mon-
itoring changes in brain age biomarkers. Many commonly prescribed medications for CP have 
been shown to negatively impact cognitive function [17,97]. Future longitudinal studies may as-
sess their long-term impacts on brain aging, informing their use, or focus on developing new 
pharmacological treatments for CP with fewer adverse effects on brain aging and cognitive func-
tion. In addition, the rapid advancement of machine learning presents further opportunities for 
brain age model-inspired interventions of cognitive impairments. For instance, generative learning 
has shown effectiveness in mapping multiple progression pathways through which the brain tran-
sitions from an initial state (e.g., healthy) to a target state (e.g., dementia) and in evaluating how 
combinations of these pathways contribute to reaching the target state at an individual level. 
This provides a technological foundation for developing brain age models that can guide person-
alized interventions in CP management. 

Concluding remarks 
As the global population ages, cognitive impairments in CP have gained increasing attention. Re-
cent research has uncovered association patterns that are notably more complex than previously 
recognized. The framework we present positions accelerated brain aging as a critical pathway 
bridging CP and cognitive impairments, thereby enhancing our understanding of their complex 
associations. This framework incorporates CP-related multi-level factors that influence the brain 
aging process, operating either before or after the onset of CP, in linear or nonlinear ways. The 
advancement of brain age models, interpretable machine learning approaches, and molecular 
brain atlases equips this framework with the tools to develop quantifiable cognitive risk assess-
ment indicators and elucidate their biological mechanisms across multiple scales. 

Some questions still remain to be explored. While accelerated brain aging has been associated 
with multiple cognitive domains in the general population, its connection in CP has so far been ex-
plored and identified mainly in the memory domain. CP involves cognitive impairments across 
multiple domains, yet it remains unclear whether accelerated brain aging accounts for a general 
factor or is specific to certain domains (see Outstanding questions). Future research would ben-
efit from integrating brain age models with cognitive assessments that span a broader range of 
cognitive domains, such as the Cognitive Assessment Battery, with rigorous validation to 
avoid inaccurate inferences arising from insufficient reliability and validity [98]. 

Our proposed framework focuses on CP-related factors that may accelerate brain aging. How-
ever, this does not rule out the possibility that some CP-related factors could potentially deceler-
ate brain aging (see Outstanding questions). For instance, a recent study identified the APOE2 
allele, known for its protective effects against dementia, as a risk factor for chronic back pain 
[99]. This could explain why chronic back pain, despite numerous factors that could accelerate 
brain aging, does not show significant accelerated brain aging and increased dementia risk. 
This emphasizes the importance of future brain age studies conducting stratified assessments 
on CP to identify high-risk subgroups. 
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