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The habenula (Hb) is a phylogenetically old structure connecting forebrain
and brainstem monoaminergic nuclei that has beenimplicated in the
pathogenesis of depression. Here, to investigate the clinical efficacy

and neural mechanisms of stimulating the Hb for alleviating depression
symptoms in humans, we bilaterally implanted electrodes in six patients
with treatment-resistant depression and delivered high-frequency
stimulation. Compared to baseline, we observed a substantial reduction
inHamilton Depression Rating Scale scores: 62.1% at 1-month, 64.0%
at3-month and 66.2% at 6-month follow-up. Local field potential data
showed that acute Hb stimulation increased theta-band power, especially
intheright side, which was related to the following clinical remission.
Moreover, functional magnetic resonance imaging data showed that
acute Hb stimulation enhanced blood oxygen level-dependent responses
of the medial orbitofrontal cortex, raphe and substantia nigra, which are
important components of the dopaminergic and serotonergic systems.
Our findings demonstrated that Hb stimulation can alleviate depressive
symptoms and modulate the activity of the medial orbitofrontal cortex,
raphe and substantia nigrain treatment-resistant depression patients.
This trial was registered under the clinical trialnumbers NCT03667872
and ChiCTR2100045363.

Major depressive disorder (MDD) is a leading cause of disability and
mortality worldwide. Approximately 30% of patients failed to respond
tostandardtherapies (forexample, antidepressant medication and psy-
chotherapy), resulting in treatment-resistant depression (TRD)". Deep
brainstimulation (DBS), whichinvolves theimplantation of electrodes
inspecific regions of the brain and the delivery of electrical impulses
to modulate neural activity, has emerged as a promising treatment for
MDD. Several brain regions have been targeted for relieving depressive
symptoms, including the subcallosal cingulate cortex (SCC), nucleus

accumbens (NAc), the anterior limb of the internal capsule and the
medial forebrain bundle (MFB)"*. However, results from randomized
controlled trials were not consistently replicated® . Although the
inconsistency may arise from several factors, including the heteroge-
neity of the patient population, the complexity of the disorder and the
variability of the surgical procedures and stimulation parameters, the
low response rates suggest novel targets in DBS treatment are needed’.

Thehabenula (Hb) hasrecently emerged as a potential therapeutic
target for depression®’, supported by evidence from humanand animal
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Fig.1| Equipment and experimental protocol. a, LFPs were recorded by the

sensing-enabled neurostimulator and transmitted in real-time to the personal
computer (PC) during on and off states; fMRIBOLD signals were also collected
during on and off states. b, DBS electrodes locations in each patient. ¢, Clinical
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data collection and assessment procedure. d, A schematic diagram of DBS
electrodes and contacts (left), an example of contacts for monopolar stimulation
(middle) and LFP recording (right). RF, radio frequency.

studies linking Hb (especially the lateral nuclei, LHb) with multiple psy-
chiatricdisorders, particularly MDD'°"?, Anatomically, the LHb exerts
apowerfulinfluence on downstream dopaminergic and serotonergic
systems, including the ventral tegmental area (VTA), substantia nigra
pars compacta (SNc) and raphe nucleus™ . These monoaminergic
centers send direct and indirect projections to the extensive corti-
cal areas such as the orbitofrontal cortex (OFC)'®". Functionally, the
LHb serves as a major player and center of an antireward system, and
aberrantactivity inthe LHb and its neural circuits hasbeenimplicated
in the pathophysiology of depression'®".

Animal models of depression consistently show that the LHb
exhibits enhanced activity and an increased number of burst-firing
neurons®’. Functional and structural imaging studies in humans also
reveal hyperactivity and increased volumes in the Hb in individuals
withMDD*?2, Building on the successful use of high-frequency stimula-
tion to block hyperactivity in the subthalamic nucleus in Parkinson’s
disease, recent pilot studies have evaluated the safety and efficacy of
high-frequency Hb DBS in patients with TRD**?*, suggesting Hb as a
promising target for DBS in depression. However, the mechanisms by

which high-frequency stimulation modulates Hb activity and neural
circuits, aswell asitsassociation with depressive symptomsin patients,
are currently unknown.

In this Article, we conducted an open-label clinical trial and
implanted electrodesinto the Hb of six TRD patients. The DBS system
enabled wireless collection of local field potential (LFP) signals during
both on- and off-stimulation periods and was compatible with mag-
netic resonanceimaging (MRI) (Fig. 1a). We collected LFP signals from
bilateral Hb as well as the whole-brain blood oxygen level-dependent
(BOLD) signals during turning stimulation on and off at the first treat-
ment session (defined as month 0), and tracked clinical outcomes at
1-,3-and 6- month follow-ups (Fig. 1c). We investigated the acute LFP/
BOLD responses induced by Hb DBS and examined the associations
between brain responses and clinicalimprovements.

Results

Patientinformation

Six patients with TRD (five unipolar and one bipolar) were enrolled in
this study. Their demographic and clinical characteristics are presented

Nature Mental Health


http://www.nature.com/natmentalhealth

Article

https://doi.org/10.1038/s44220-024-00286-2

Table 1| Patient demographic and clinical information

Patient 1 2 3 4 5 6 Group

Gender M F M F F F 4 female (F)/
2 male (M)

Current age 34 30 22 34 18 22 26.67+6.89

Age at MDD onset 13 8 16 32 13 15 16.17+8.23

Past ECT Yes Yes Yes Yes No Yes 50f6

Past psychotherapy Yes Yes Yes Yes Yes Yes 60f6

Past TMS No Yes Yes No Yes No 30f3

Past ketamine Yes No No No No No 1of6

DSM-5 diagnosis UP UP UP UP BP UP 5 UP/1BP

HDRS,; 22 35 27 30 25 35 29.00+5.33

HARS 20 46 21 25 33 33 29.67+9.79

Number of 3 4 3 5 5 1 3.5+1.52

preoperative
medications

ECT, electroconvulsive therapy; TMS, transcranial magnetic stimulation; DSM-5, Diagnostic
and Statistical Manual of Mental Disorders, 5th Edition; UP, unipolar; BP, bipolar.

in Table 1. The patients underwent bilateral Hb DBS surgery between
January 2019 and March 2022. They had an average age of 26.67 (rang-
ingfrom18to 34) years and were mostly female (n = 4). Their baseline
average score on the 17-item Hamilton Depression Rating Scale (HDRS,,)
was 29.00 (ranging from 22 to 35) and their average age of MDD onset
was 16.17 (ranging from 8 to 32) years. At baseline, they were taking
an average of 3.5 medications (ranging from 1to 5), which are listed
inSupplementary Table 2.

Clinical outcomes

At the individual level, DBS electrodes were precisely implanted into
the bilateral Hb (Fig. 1b and Supplementary Fig. 1). Patients received
continuous monopolar stimulation (an example is shownin Fig. 1d) with
individualized therapeutic voltage (the pulse and frequency were fixed
at 90 ps and 160 Hz) throughout the six-month treatment. Details of
theindividualized therapeutic contact and parameters can be foundin
Supplementary Table 1. The volume of tissue activated with the initial
treatment parameters are shown in Supplementary Fig. 1. Notably,
patient 6 withdrew from the study at the 3-month follow-up dueto a
personal choice of discontinuing further follow-ups. Thus, data from
five patients were analyzed for both the 3- and 6-month follow-up
evaluations.

Compared to baseline, the HDRS,, score in the six patients was
reduced by 62.1% at 1-month follow-up (29.0 + 5.3 versus 11.0 + 8.1,
P=0.03), 64.0% at 3-month follow-up (27.8 £ 5.0 versus 10.0 + 4.4,
P=0.06) and 66.2% at 6-month follow-up (27.8 + 5.0 versus 9.4 + 5.0,
P=0.06) (Fig. 2a). The number of clinical responders (HDRS,, score
reduction >50% from baseline) was 5, 5 and 3 at 1-, 3- and 6-month
follow-up, respectively. The number of clinical remission (HDRS,, score
<8)was2,1and1at1-,3-and 6-monthfollow-up, respectively. Patient 4
achieved remissioninall follow-ups. The Hamilton Anxiety Rating Scale
(HARS) score was reduced by 59.6% at 1-month follow-up (29.7 + 9.8
versus 12.0 + 8.9, P=0.03), 64.1% at 3-month follow-up (29.0 +10.8
versus10.4 + 7.4, P=0.06) and 64.1% at 6-month follow-up (29.0 £10.8
versus10.4 + 8.2, P=0.06) (Fig. 2b).

At the 1-month follow-up, the number of medications used in the
six patients remained the same as at baseline, ranging from one to five.
However, excluding patient 6, the number of medications used by the
remaining five patients decreased from 4.00 (ranging from 3 to 5) at
baseline to 3.60 (ranging from1to 5) and 2.60 (ranging from1to 4) at
the 3- and 6-month follow-up, respectively. Supplementary Table 2
provides details of individualized medication use.
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Fig.2|Individualized clinical outcomes. a, The HDRS; score of each patient
atbaseline, 1-, 3-and 6-month follow-up. b, The HARS of each patient at baseline,
1-,3-and 6-month follow-up.

No surgery-, device- or disease-related complications were
reported during the perioperative period, as reported in our previous
studies®?, Four patients reported instantaneous electrical sensation
and one patient reported dizziness upon initial activation of the DBS,
which quickly subsided. No other surgery-, device- or disease-related
adverse events were observed throughout the 6-month treatment.

Outcomes of LFPinthe Hb

Toinvestigate the effects of high-frequency (160 Hz) stimulation of Hb
onits neural activities, we recorded the LFP of bilateral Hb with DBS
turned off and on at month 0. The LFP of patient 1 was excluded from
the analysis because of the short data duration with DBS on. Thus, LFP
data from five patients were analyzed at month O.

Thebipolar stimulationand LFP recording contacts (anexampleis
showninFig.1d) foreach patientarelisted in Supplementary Table 3. The
power spectral density (PSD) of different frequency bandsin the rightand
left Hb during DBS ‘off” and ‘on’ are illustrated in Fig. 3a,b, respectively.
After the DBS was turned on, the power of the theta band in right Hb
increasedinallpatients (0.23 + 0.05 versus 0.26 + 0.06, P=0.06; Fig. 3a).
Incontrast, although the power of the thetaband inleft Hb alsoincreased
at the cohort level (0.22 + 0.04 versus 0.27 + 0.04, P=0.13; Fig. 3b), it
showed inconsistent changes across patients. The power of the delta,
alpha and beta bands in both the right and left Hb showed no notable
difference at the cohort level and inconsistent changes across patients
(Fig.3a,b). Individual values are provided in Supplementary Table 4.

We then provide individual data showing changes in theta-band
PSD and changesin HDRS,,at 1-, 3- and 6-month follow-ups (Fig. 3c,d).
These data demonstrated that patients who achieved remission at all
follow-up sessions had agreaterincreasein theta-band PSD in the right
butnotleft Hb at month O (Fig.3c,d). Theseresults suggested that the
higher theta-band PSD response to acute stimulation in the right Hb
was related to clinical remission.

Outcomes of BOLD in the reward system

To investigate the effects of high-frequency stimulation of Hb on the
reward system, we examined the fractional amplitude of low-frequency
fluctuation (FALFF) when turning DBS off and on at month O (Fig. 1c).
Theresults showed that the fALFF of the medial orbital gyrus (mOFC),
raphe nucleus and SNc were significantly and consistently increased
after DBS activation (mOFC: 0.575 + 0.015 versus 0.585 + 0.014, P= 0.03;
Fig. 4a; raphe nucleus: 0.558 + 0.024 versus 0.579 + 0.023, P=0.03;
Fig.4b; and SNc: 0.556 + 0.008 versus 0.571 + 0.015, P= 0.03; Fig. 4c).
However, the fALFF of other core components of the reward system
includinglateral OFC, putamen, NAcand VTA, did not show significant
changes at the cohort level, nor did they show consistent changes at
the individual level after DBS was turned on (Supplementary Table 5
and Supplementary Fig. 2).

Discussion
In this prospective open-label clinical study, we aimed to investigate
the clinical efficacy and neural mechanisms of Hb DBS in patients with
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Fig.3|The modulation of PSD at the Hb by acute stimulation and its
relationship with clinicalimprovements. a, PSD changes from five patientsin
different bands (delta, theta, alpha and beta) in right Hb after DBS activation. The
center line indicates the mean, the bottom and top edge of the box indicates the
25th and 75th percentiles and the whiskers indicate the minimum and maximum,
respectively. Only the power of the thetaband in the right Hb increased in all
patients (two-sided Wilcoxon matched-paired signed rank test, W =15, P= 0.06).
b, PSD changes from five patients in different bands (delta, theta, alpha and beta)
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inleft Hb after turning DBS on. The center line indicates the mean, the bottom
and top edge of the box indicates the 25th and 75th percentiles and the whiskers
indicate the minimum and maximum, respectively. ¢, Individual data showed that
patients who achieved remission at 1-, 3- and 6-month follow-ups had a greater
increase in theta-band PSD in right Hb at month 0. d, Individual data showed that
patients who achieved remission at 1-, 3- and 6-month follow-ups had no relation
to the theta-band PSD in left Hb at month 0. a.n., normalized.

TRD. All six patients who received 160 Hz Hb DBS showed improve-
ments in depressive symptoms, with an average reduction of 62.1%
at 1-month follow-up (n = 6), 65.5% at 3-month follow-up (n =5) and
67.6% at 6-month follow-up (n = 5). Similarly, anxiety symptoms also
decreased, with an average reduction of 59.6% at 1-month, 65.0% at
3-month and 65.0% at 6-month follow-up. These clinical improve-
ments were consistent with our initial case study” and another recently
reported study, which demonstrated that chronic Hb DBS treatment
resultedinarapid and sustained improvement in depression, comorbid
anxiety symptoms, sleep quality, health status and functionalimpair-
ments*. Taken together, these results provide strong support for the
clinical benefits of high-frequency Hb DBS for patients with TRD. In
addition, at1or3 months, the response/remitter rates are comparable

orevensuperior tothose reported with DBS targeting the MFB or SCC.
However, at 6 months, the response/remitter rates appear to be similar
or potentially lower compared to DBS targeting the MFB or SCC****2%,
These findings suggested that the Hb could be a promising target for
DBSin the treatment of TRD, similar to the MFB or SCC.

It is worth noting that patients 2 and 5 stopped responding at
6 months, reflecting the fluctuations in clinical efficacy of Hb DBS
over time, which have also been observed in DBS targeting MFB or
SCC?*"?8, There are two potential reasons for the fluctuation in HDRS,,
scores among these patients. First, changes in the medication regi-
men may have contributed to the fluctuations in their HDRS,, scores.
For example, patient 2 transitioned from taking four medications to
two, while patient 5 reduced the medication intake from five to two
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Fig.4 | Acute stimulationinduced fALFF changes in key regions of the reward
system at month 0. a-c, Significant activation from six patients in the mOFC
(a), the raphe (b) and the SNc (c) (two-sided Wilcoxon matched-paired signed
rank test. mOFC: W=21, P=0.0313; raphe nucleus: W=21,P=0.0313; SNc: W=21,

P=0.0313). The bottom and top edge of the box indicates the 25th and 75th
percentiles, respectively. The whiskers indicate 1.5x the interquartile range
up to the minimum and maximum. *P < 0.05.

between the 3-month and 6-month assessments. This adjustment in
medication could have influenced their response to treatment. Second,
it isimportant to note that the HDRS, scores primarily evaluate the
patient’s condition over the past 2 weeks and may be influenced by
their current state at the time of assessment. Various factors, such as
situational circumstances or temporary changesin mood, may impact
the HDRS,, scores at a specific assessment point.

Although a recent study showed that high-frequency DBS could
reduce LHb burst firing but not the mean firing rate to ameliorate
depression-like behaviorsinrats®, the electrophysiological evidence
for Hb DBS in humans is lacking. In contrast to animal studies that
recorded rapid synchronized firing of a group of neurons, our study
collected LFP, which measures the summed electrical activity of a
population of neurons. We reported that high-frequency stimulation
increased the theta-band power of Hb, which was consistent with our
first case report®. Our study is the first to determine the specific neural
oscillation response to acute Hb DBS in humans with depression at the
cohortlevel.

Wefoundthat theright theta-band activity increased in all patients
after turning on stimulation, but not the left side, suggesting an asym-
metric response of Hb DBS in TRD patients. This asymmetry has been
observed in many animal studies showing left-right differences in Hb
size and neural circuitry. Similarly, human studies also showed the
asymmetric function (that is, robust responses to the value of shock
cues in the right Hb)* or structure (that is, larger in the left Hb)* in
the left and right Hb, in both healthy participants and patients with
MDD, Inaddition, arecent study showed a strong negative correlation
between patients’ theta-band PSD from the right Hb and the severity
of depression®. These results in patients also supported our findings
thatincreased Hb theta-band power may reduce depressive symptoms.
More importantly, our results found that a higher theta-band PSD
response to acute stimulationinthe patients’ right Hb were related to
clinical remission at all follow-ups. Thisis aninteresting point, suggest-
ing that Hb electrophysiology may potentially have some connection
with treatment responses and need further investigation.

Rodent studies have shown that the Hb is functionally connected
to other brain regions that regulates emotion™**°, A recent study

with LHb DBS for two rat models of depression demonstrated that the
activation of the limbic system and the monoaminergic systems played
acritical rolein the rapid antidepressant effects®. Our study is the first
to demonstrate that high-frequency Hb stimulation increased brain
activitiesinthe mOFC, raphe nucleus and SNc, indicating that DBS can
enhance synchronized activities in the part of reward system in TRD
patients. This finding is consistent with previous research showing that
DBS can modulate local neural activity and lead to changes in brain
networks and behavioral outcomes®*’,

Our study has several limitations. First, the sample size was small,
and additional experiments are required to validate the findings regard-
ing neural responses. Second, Although Hb electrophysiology might
potentially be related to treatment responses, this needs to be con-
firmed in more long-term follow-ups. Further research is necessary
to gain deeper insights into the neural mechanisms underlying these
effects and to confirm one or more objective biomarkers to track recov-
eryorrelapse of depression and aid in optimizing treatment strategies.

Conclusions

Our study provides direct evidence that Hb stimulation can alleviate
depressive symptoms and modulate the mOFC, raphe nucleus and
SNcin patients with TRD. Larger and well-controlled clinical trials are
needed to further validate the efficacy and neural mechanisms of Hb
DBS for TRD.

Methods

Inclusion and exclusion criteria

This study included six patients with TRD who met the following inclu-
sioncriteria: (1) age between 18 and 70 years; (2) meeting the Diagnostic
and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) criteria
for MDD or bipolar disorder, with a chronic illness episode lasting
more than 1year; (3) failure to respond to at least two adequate anti-
depressant medications from different classes, not including other
therapies, such as psychotherapy or electroconvulsive therapy; (4) the
HDRS,; score >20 at each of two separate baseline visits (4-6 weeks),
as assessed by two psychiatrists, and <20% reduction in HDRS,; score
between the two visits; and (5) current antidepressant or psychotropic
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medication regimen had to be stable for at least 4 weeks before study
entry. Exclusion criteriaincluded (1) the presence of other psychiatric
comorbidities, including obsessive-compulsive disorder, posttrau-
maticstress disorder, panic disorder, anorexia nervosa, substance use
disorder and personality disorder; (2) the presence of central nervous
system disease that impairs motor, sensory or cognitive function or
that requires intermittent or chronic medication; (3) previous abla-
tive or other intracranial surgery or any medical contraindication to
surgery; (4) contraindication to MRIscanning; (5) pregnancy or intent
to conceive during the study; and (6) current participationin another
investigational device, drug or surgical trial.

The study procedures were approved by the Ethics Committee
of the First Medical Center, General Hospital of the Chinese People’s
Liberation Army, Shenzhen Second People’s Hospital and Shenzhen
Kangning Hospital. Patients and their legal guardians were fully
informed of the therapy and signed the informed consent, accord-
ing to case report guidelines and in compliance with the Declaration
of Helsinki principles. The DBS system is provided free of charge to
patients in our study. This trial was registered under the clinical trial
numbers NCT03667872 and ChiCTR2100045363.

DBS surgery

For each patient, a safe frontal trajectory for the left and right Hb
was planned by preoperative MRI co-fused with computed tomo-
graphy (CT) using the Leksell stereotactic frame (Elekta). All patients
underwentimplantation of DBS electrodes with four 1.5 mm contacts
separated by 0.5 mm (L301C, PINS) under general anesthesia (Fig. 1d).
Two electrodes were implanted bilaterally into the Hb, and an LFP
sensing-enabled neurostimulator (G102RS, PINS) was connected to
the leads (E202C, PINS). Intraoperative MRI and postoperative CT
scans were conducted within 24 h to ensure successful implantation
andtorule outany surgery-related complications, such asintracranial
pneumatosis or intracerebral hemorrhage.

DBS electrodes localization

Thelocations of the DBS electrodes were reconstructed with Lead-DBS
2.5 (ref. 40). The 1-month postoperative CT was coregistered to the
preoperative T1-weighted MRIusing advanced normalization tools and
then normalized to the Montreal Neurological Institute (MNI) space.
The Hb was defined according to the DBS Tractography Atlas provided
by Lead-DBS. The patient’s implanted DBS electrodes are displayed
inFig.1b and Supplementary Fig. 1.

Clinical evaluation and follow-up

One psychiatrist blinded to the current stimulus parameters evaluated
clinical efficacy using the HDRS,; and the HARS at baseline (that is,
preoperative scores) and monthly after surgery for 6 months. Another
physician was responsible for regulating the therapeutic contacts
(monopolar stimulation) and parameters. First, based on the opti-
mum position of electrode contacts, anindividualized recommended
stimulation voltage was determined for each patient using the SimBio/
FieldTrip model through Lead-DBS version 2.2.0 (ref. 40) (Supple-
mentary Fig.1). Second, at month O (Fig. 1c), the physician conducted
aprogram test to identify the stimulation voltage range and the best
therapeutic voltage for each patient. The DBS was continuously applied
throughout the 6-month treatment, and the therapeutic contact and
voltage of Hb were adjusted based on each patient’s clinical response.
Patients were permitted to maintain or reduce their previous medica-
tions during the 6-month follow-up period, unless an intervention
was required.

LFP data acquisition

The LFPs were recorded by the LFP sensing-enabled neurostimulator
and transmitted to an external computer equipped with a telemetry
head for high-speed decoding, real-time display and storage***. During

the recording period, the DBS system functioned normally in each
patient, with particular attention paid to wireless communicationand
impedance (Fig. 1a). To reduce electrocardiographic signals from the
LFPsignal recording, the bipolar stimulation mode was utilized*. Asam-
plingrate of 500 Hz was used for DBS offand onrecordings (5 mineach,
using the same contacts). The LFP signals were preprocessed using a
hardware-based 0.3 Hz high-pass filter and a 250 Hz low-pass filter.

MRI data acquisition

Both preoperative and postoperative structural and functional MRI
(fMRI) images were acquired with a3.0 T Prisma (Siemens) MRI scan-
ner equipped with a 64-channel head coil. Structural images were
acquired using asagittal magnetization-prepared rapid gradient echo
Tl-weighted sequence (0.7-mm isotropic resolution, field of view
(FOV) 0f 224, FOV phase 0f100%, slice thickness of 0.7 mm, repetition
time of 2,200 ms, echo time of 2.48 ms and flip angle of 8°). Functional
images were acquired using an echo-planar imaging sequence (voxel
size 0of 3.0 x 3.0 x 3.0 mm, FOV of 216, FOV phase of 100%, slice thick-
ness of 3.0 mm, repetition time of 3,000 ms, echo time of 30 ms and
flip angle of 85°).

At month 0, each patient underwent one structural MRI and six
fMRIruns, with eachrunlasting 5 minand17 s. Thefirst three runs were
conducted without stimulation, while the next three were performed
with the treatment parameters activated. Patients were instructed to
keep their eyes closed and remain relaxed during the scans without fall-
ingasleep. The safety of the DBS systemin 3.0 T MRl was demonstrated
in our previous study®****,

LFP analysis

For the LFP data, the first 1-s segment was excluded due to unstable
pulse generator activity immediately following DBS activation. To
reduce baseline drift and stimulation artifacts, a 2-100 Hz bandpass
filter and customized trap filters were applied to the remaining seg-
ments, as described in previous studies™*%. Segments with substantial
movementartifacts were excluded from subsequent dataanalyses. The
PSD of LFPs was estimated by Welch’s method with a frequency resolu-
tion of 0.1 Hz and then normalized (a.n.) by dividing the total power
between 2 Hzand 30 Hz. Power was calculated as the sum of the relative
normalized PSDin eachband (deltaband, 2-4 Hz; thetaband, 4-8 Hz;
alpha band, 8-13 Hz; beta band, 14-30 Hz). The difference in power
between DBS on and off at session 0 was calculated for each band.

fMRI analysis
The fMRIdatawere preprocessed using SPM12 (http://www.fil.ion.ucl.
ac.uk/spm/) and custom codes writtenin MATLAB. First, the functional
images were corrected with the middle slice serving as a reference to
adjust for timing differencesinslice acquisition and were realigned to
thefirst scanviarigid-body motion correction. Then, the Tlimages of
patients were spatially coregistered to their mean fMRIimage, followed
by spatial coregistration and normalization to the standard stereotactic
MNI space. The functional images were also normalized to the MNI
space (resampled voxel size of 3 x 3 x 3mm?®) using the coregistration
parameters of the Tlimage and were spatially smoothed witha 4-mm
fullwidth at half maximum Gaussian kernel. Finally, the effects of white
matter, cerebrospinal fluid, head motion (Friston-24 motion para-
meters) and linear trends were removed from the fMRI time courses.
To obtain voxel-wise fALFF maps, the preprocessed fMRI time
courses first underwent a transformation to the frequency domain
usingafast Fourier transform, followed by the calculation of the power
spectrum. Then, the fALFF value for each voxel was obtained by calculat-
ing the ratio of the power spectrum within the predefined frequency
band (0.01-0.10 Hz) to that of the entire frequency range (0-0.167 Hz) .
Further, we selected brain regions that were closely associated
with reward circuits from Anatomical Atlas Labelling version 3 (https://
www.oxcns.org/aal3.html), including bilateral mOFC, bilateral lateral
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orbital gyrus, bilateral putamen, bilateral NAc, VTA, SNc and raphe.
The fALFF of each brain region was calculated by averaging the voxel-
wise fALFF values within that region when DBS was turned on and off
atmonth O, respectively.

Statistical analysis

The Wilcoxon matched-pairs signed rank test was used to compare
the patients’scores onthe HDRS,;and HARS obtained at baseline with
their corresponding scores obtained at1-, 3-and 6-month follow-ups,
the LFPintheleft and right Hb, as well as region-wise fALFF when DBS
was turned on and off at month 0. The significance level for all tests
was set at 0.05 (two sided). We presented data as mean + standard
deviation, and included individual patient data along with the group-
averaged data and corresponding statistical results to present inter-
individual differencesin clinical and neural responses using GraphPad
Prisma 8.0. It is worth noting that the efficacy of patient 1 had been
reported in previous literature®.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated or analyzed are included in the manuscript and
supporting files. Source data are provided with this paper.

Code availability

The publicly available software and code for the analysis has been
described in Methods of our manuscript. The code for LFP analysis can
beaccessed at https://github.com/nercnlab/LFP-analysis/blob/main/
Num_LFP%20analysis (ref. 50).
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The data were normalized to the MNI152 atlas.

The head motion was corrected using rigid body correction; The signals of white matter and cerebrospinal fluid, Friston-24 motion parameters,
and linear trends were regressed.

No volume censoring was performed.

Statistical modeling & inference

Model type and settings

Effect(s) tested

The study is not involved in task MRI and no model was used.

For resting-state fMRI, ROI-wise fALFF were compared between DBS off and on sessions at month 0.

Specify type of analysis: [ | whole brain  [V] ROI-based  [_] Both
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Statistic type for inference Wilcoxon matched-pairs signed rank test was used for comparison of fALFF.

(See Eklund et al. 2016)
Correction No correction

Models & analysis

n/a | Involved in the study
|A_L| D Functional and/or effective connectivity

|A_L| D Graph analysis

|A_L| |:| Multivariate modeling or predictive analysis
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Functional and/or effective connectivity

Graph analysis
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Multivariate modeling and predictive analysis

This checklist template is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in
the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0,
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