
Nature Mental Health

nature mental health

https://doi.org/10.1038/s44220-024-00223-3Article

Morphological and genetic decoding shows 
heterogeneous patterns of brain aging in 
chronic musculoskeletal pain

Lei Zhao1,2,9, Jiao Liu3,4,9, Wenhui Zhao1,2, Jie Chen1,2, Jicong Fan5, Tian Ge6,7,8 & 
Yiheng Tu    1,2 

Chronic musculoskeletal pain (CMP), a prevalent and heterogeneous 
condition characterized by persistent pain in various body parts, is a leading 
cause of disability worldwide and greatly affects a patient’s brain. Apart from 
experiencing pain, older adults with CMP also have accelerated cognitive 
decline and higher dementia risk with limited understanding of biological 
mechanism underlying the associations between CMP and dementia risk. 
A multiscale study to disentangle pathological brain aging from normal 
brain aging may reveal the underlying mechanisms. Using large-scale, cross-
sectional and longitudinal cohorts (N = 9,344), we have developed an MRI-
based brain age model (N = 6,725) to evaluate the difference between brain 
age and chronological age, termed ‘predicted age difference’ (PAD), across 
several common types of CMP (N = 2,427). Our study unveils significantly 
increased PAD in knee osteoarthritis (KOA) cohorts versus healthy controls, 
and validates it in an independent dataset (N = 192), suggesting a pattern of 
brain-aging acceleration in KOA. This acceleration was contributed by the 
hippocampus in both datasets and predicted memory decline and dementia 
incidents during follow-up. The SLC39A8 gene showed pleiotropy between 
brain-aging accelerations and KOA and exhibited spatially transcriptional 
associations with the regional contributions to brain-aging accelerations. The 
genes exhibiting spatially strong transcriptional associations with regional 
contributions were highly expressed in microglial cells and astrocytes, and 
were mainly enriched in synaptic structure and neurodevelopment. These 
findings highlight a heterogeneous pattern of brain aging in CMP and reveal 
a heritable morphological pattern that links brain-aging acceleration to 
cognitive decline and an elevated risk of dementia in KOA.

Elderly individuals disproportionately suffer from chronic musculo-
skeletal pain (CMP), a major source of disability that affects more than 
40% of the world’s population1. Increasing evidence suggests that, apart 
from persistent pain, older adults with CMP are also subject to accel-
erated cognitive decline and an increased probability of dementia2–5. 

During the aging process, cognitive decline and increased dementia 
incidents are associated with the accumulation of impairments in the 
brain, at scales ranging from the molecular genetic level to cellular 
and morphological levels6–8. However, the accumulation of biological 
impairments has substantial heterogeneity in individuals with different 
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(N = 192; from the local community). Patients in dataset 2 were invited 
to re-evaluate their cognitive scores, assess their dementia risk, and 
receive a rescanning after five years. This longitudinal design enabled 
us to associate brain-aging acceleration at the baseline session with 
the cognitive decline at the follow-up session. Finally, we examined 
molecular genetic mechanisms of brain-aging acceleration using GWAS 
summary statistics, gene transcriptional profiles of the brain and gene 
markers specific to brain cell types.

Results
Brain age model
Using a training set (N = 5,202) from UKB, we trained the brain age 
model to fit the relationship between the pattern of whole-brain gray 
matter volume (GMV) and chronological age in healthy individuals. 
This fitting provides a predefined reference that informs a supposed 
position (that is, corresponding chronological age) in the healthy aging 
trajectory for a given brain. We then tested the performance of the 
brain age model in an independent hold-out set (N = 1,523) from UKB. 
The results showed that the brain age predicted by our brain age model 
closely matched the individual’s chronological age (Pearson’s r = 0.928, 
P < 0.001, confidence interval (CI) = (0.921, 0.935); mean absolute error 
(MAE) = 2.367) (Fig. 2a), suggesting that brain age effectively reflects 
the biological age of the brain. To validate the stability and reliability 
of the brain age predicted by our model, we examined the scan–rescan 
consistency of this metric in individuals who had two MRI scans in 
the hold-out set (N = 104, the interval of the two scans ranged from 
two to six years, mean interval = 2.260 years). A strong correlation 
(Pearson’s r = 0.987, P < 0.001, CI = (0.981, 0.991)) was found between 
brain age in the first and second scans (Fig. 2b). The change of brain 
age between the two scans was significantly equivalent (P < 0.001, 
equivalence testing) to the change in chronological age (mean change 
of brain age = 2.322 years, mean interval of two scans = 2.260 years) 
(Fig. 2b). Overall, our brain age model provided an accurate and reliable 
estimation of an individual’s brain age.

Heterogeneous patterns of brain aging in CMP
To investigate which types of CMP deviate from the normal trajec-
tory of brain aging, we applied the established brain age model to 
individuals with CMP taken from UKB (dataset 1). Each individual in 
dataset 1 (N = 2,427) was assigned to one of four cohorts according to 
the single painful site relevant to them: chronic knee pain (N = 982), 
chronic back pain (N = 591), chronic neck pain (N = 528) and chronic hip 
pain (N = 326) cohorts. Consistent with a previous brain age study on 
multiple disease groups32, for each CMP cohort we randomly selected 
sex- and age-matched healthy controls (HCs) of equal number from the 
hold-out set. For each individual, we estimated a predicted age differ-
ence (PAD), which was the deviation between an individual’s brain age 
and their chronological age. This index provided an individual with a 
quantifiable evaluation of the level of brain-aging acceleration16. Next, 
between-group PAD differences in each CMP cohort were examined, 
relative to their respective HC.

Figure 2c shows the estimated PAD and statistical results in data-
set 1. Compared with HC, the chronic knee pain cohort showed sig-
nificantly higher PAD (Cohen’s d = 0.130, false discovery rate (FDR) 
q = 0.027), but no significant alterations were observed in the other 
CMP cohorts (FDR q > 0.05). To examine whether increased PAD in the 
chronic knee pain cohort was dominated by KOA, the most common 
disease leading to chronic knee pain in older adults, we further subdi-
vided the chronic knee pain cohort into two subgroups (that is, with 
(N = 161) and without (N = 821) KOA). Significantly higher PAD (d = 0.437, 
P < 0.001) was found in the KOA cohort, but not in those without KOA 
(P > 0.05), compared with sex- and age-matched HCs of equal size. 
We also performed several additional analyses to demonstrate that 
brain-aging acceleration in KOA was not (1) merely an exemplification 
of arthritis, (2) due to reduced physical activity and (3) dominated by 

lifestyles, health conditions, environmental factors and genetic risk fac-
tors, and this modulates the rate of aging9,10. Thus, characterizing bio-
logical brain aging rather than chronological aging will have substantial 
implications in terms of explaining variations between cohorts and 
individuals regarding memory decline and dementia risks with CMP.

The brain plays a pivotal role in regulating mental health in relation 
to cognition, emotion and behavior11. The anatomical structure of the 
brain constrains its functional organization and thus offers insights 
into mental health12. The structure of the brain changes constantly with 
increasing chronological age. These changes mostly reflect the normal 
aging process, but they can also be modulated by pathological condi-
tions and genetic predisposition13–15. Age prediction using magnetic 
resonance imaging (MRI) data and machine-learning techniques could 
provide a robust estimation of an individual’s ‘brain age’ by assessing 
the age of brain tissues from a normative lifespan trajectory16. Studies 
suggest that the deviation of an individual’s brain age from chronologi-
cal age is associated with cognitive function17,18. The rate of brain aging 
can be accelerated by some disease exposures that have critical roles in 
the emergence and development of dementia19. For example, a higher 
brain age relative to chronological age has been found in patients with 
schizophrenia20, depression21 and alcohol dependence22. These studies 
suggest that brain age may hold prognostic value, potentially predict-
ing cognitive decline and dementia risks by assessing the individual 
differences in the interaction of brain aging and CMP.

CMP is heterogeneous in etiology, spanning a wide range of 
genetic23, environmental24 and biological factors25. This complexity 
suggests that brain-aging trajectories in different CMP conditions 
may exhibit substantial heterogeneity. For example, chronic knee 
or hip pain, often attributed to knee osteoarthritis (KOA) and hip 
osteoarthritis, is frequently accompanied by persistent low-grade 
inflammation, which has been widely acknowledged as a hallmark of 
biological aging26. There is also evidence supporting the association 
of osteoarthritis with accelerated memory decline and an elevated 
risk of dementia27,28. A recent study has shown that osteoarthritis can 
accelerate the accumulation of amyloid-β and tau proteins in the brain, 
which are key pathological events associated with the development of 
Alzheimer’s disease29, highlighting the possibility that individuals with 
osteoarthritis may be at a higher risk of experiencing the acceleration 
of brain aging.

A few studies have assessed brain-aging acceleration in CMP30,31, 
but several issues remain to be addressed (Fig. 1a). First, studies so 
far have been small in scale and have focused on a single type of CMP, 
hindering assessment of the clinical and mechanistic distinctions. It 
is unclear whether common types of CMP share a general pattern or 
follow distinct patterns of brain-aging trajectory. Second, a longitu-
dinal investigation is warranted to uncover the potential of brain age 
as a prognostic biomarker for cognitive decline and dementia risk in 
patients with CMP. Third, the genetic underpinnings of brain aging in 
CMP are not understood, although genome-wide association studies 
(GWASs) have identified risk variants linked to CMP and brain-aging 
acceleration, respectively32,33. The recent construction of a brain-wide 
gene expression atlas has made it possible to connect macroscale 
spatial compositions of brain aging with spatial variations in micro-
scale gene expressions34, providing an alternate avenue to explore the 
molecular genetic basis of brain aging in patients with CMP.

To address these issues, we first trained an elastic net regression 
model using a cohort of healthy participants (training set, N = 5,202) 
from the UK Biobank (UKB), utilizing their chronological age as the 
label and structural MRI data as the feature. We refer to this model as 
the ‘brain age model’ because its purpose is to predict the age of an 
individual’s brain. The generalization of this model was evaluated by 
testing it on a separate cohort of healthy participants (hold-out set, 
N = 1,523) from UKB. We then applied this model to several common 
types of CMP in dataset 1 (N = 2,427; from UKB) to assess which type of 
CMP accelerates brain aging, then validated the findings on dataset 2 
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specific sex or (4) caused by medications, comorbidities and levels of 
education (Supplementary Figs. 1–4 and Supplementary Methods 1–4). 
In addition to gray-matter structures, white-matter structures and the 
functional activity of gray matter also showed substantial age-related 
changes6,35. Accordingly, we also constructed two brain age models 
based on the structural connectivity (SC) of brain white matter and 
the functional connectivity (FC) of brain gray matter and applied them 

to evaluate the brain-aging acceleration of CMP. Consistent with the 
findings for gray-matter structures, PAD estimated by structural and 
functional connectivity was significantly higher (SC: d = 0.299, FDR 
q = 0.013; FC: d = 0.221, FDR q = 0.038) in the KOA cohort compared to 
HCs (Supplementary Figs. 5 and 6 and Supplementary Method 5). It is 
worth noting that although KOA had the largest effect size (Cohen’s d) 
in brain-aging acceleration estimated by FC, we observed that patients 

Is there a heterogeneous pattern of brain aging in common types of CMP?

Can accelerated brain aging in CMP reflect cognitive ability or predict 
longitudinal cognitive decline?

What are the genetic underpinnings of accelerated brain aging in CMP?
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Fig. 1 | Overview of research questions, participants and analysis pipeline.  
a, The present study aims to answer three research questions (Q1–Q3) using two 
independent datasets (datasets 1 and 2) consisting of several common types of 
CMP. b, Age distributions of the training set, hold-out set and several cohorts 
with CMP. c, Overview of the five steps to address the three research questions. 
We have developed and validated an MRI-based brain age model using training 

and hold-out sets (step 1) and apply it to examine distinct brain-aging trajectories 
in several cohorts with CMP (step 2). We also investigate the relationships 
between brain-aging acceleration and cognitive function, dementia risk and pain 
characteristics (steps 3 and 4). Genetic analyses are employed to explore the 
genetic underpinnings of brain-aging acceleration (step 5). PAD, predicted age 
difference.
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with hip pain and other knee pain had higher PAD than controls. Given 
the highly fluctuating nature of FC, we believe that findings from struc-
tural MRI (that is, regarding gray matter volume and SC) may provide 
a more reliable insight into brain-aging acceleration in CMP patients.

To demonstrate the reliability of the findings, we applied the brain 
age model to dataset 2, which consisted of 133 patients diagnosed with 
KOA and 59 matched HCs. Figure 3a displays the estimated PAD and 
statistical results from dataset 2. Consistent with dataset 1, signifi-
cantly higher PAD was also found in the patients with KOA (d = 0.454, 
P = 0.020). We performed sensitivity analyses to confirm that brain-
aging acceleration in KOA was not dependent on the representation 
of GMV features or the machine-learning algorithm employed in both 
datasets (Supplementary Fig. 1 and Supplementary Method 6). Taken 
together, we identified a replicable (increased PAD was found across 
two independent datasets) and specific pattern (only observed in KOA 
but not in other CMP or arthritis syndromes that we investigated) of 
brain-aging acceleration in KOA.

Although brain age is characterized by the pattern of whole-brain 
GMV, accelerations in diseased populations may be driven by some 
core regions. To investigate which brain areas contribute to brain-aging 
accelerations in KOA, we first examined the associations between the 
GMV of brain areas (parcellated by the Brainnetome Atlas) and PAD 
across the KOA and HC groups in dataset 1. As shown in Fig. 2d, PAD 
was significantly correlated with the GMV of a wide range of brain areas 
(Bonferroni-corrected P < 0.05). Among these brain areas, the hippocam-
pus, thalamus, insula, orbitofrontal lobe (OFC), inferior frontal gyrus 
(IFG), middle frontal gyrus (MFG), middle temporal gyrus (MTG), supe-
rior temporal gyrus (STG) and cingulate gyrus exhibited significantly 
reduced (P < 0.05) GMV in the KOA group compared to the HC group 
(Fig. 2e). Despite the relatively small sample size, dataset 2 also revealed 
significant correlations with PAD (Bonferroni-corrected P < 0.05) and 
between-group differences (P < 0.05) in the GMV of the hippocampus 
(Supplementary Fig. 7 and Fig. 3b). Detailed information regarding the 
statistical results is presented in Supplementary Tables 1–4.
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Fig. 2 | Training a brain age model and applying it to cohorts with CMP 
in dataset 1. a, Plots showing significant associations (P < 0.001, two-tailed 
Pearson correlation) between predicted brain age and chronological age in the 
training set (left, N = 5,202) and hold-out set (right, N = 1,523). b, Assessment of 
the stability of the brain age model across two scans (N = 104). Predicted brain 
age showed a significant association between the first and second scans (left, 
P < 0.001, two-tailed Pearson correlation). Significant equivalence was found 
between the longitudinal change of brain age and chronological age within 
a mean scan interval of 2.260 years (right, P < 0.001, one-tailed equivalence 
testing). The gray dashed line represents the upper equivalence bounds and 

the whiskers represent 95% CIs. c, PAD was significantly increased (two-tailed 
two-sample t-test) in cohorts with chronic knee pain and KOA compared to their 
respective HCs. d, Spatial brain patterns where the colored brain areas show 
significant associations (Bonferroni P < 0.05, two-tailed Pearson correlation) 
between GMV and PAD across the KOA and HC groups. e, Spatial brain patterns 
where the colored brain areas show significant associations both between GMV 
and PAD and difference in GMV (P < 0.05, two-tailed two-sample t-test) between 
the KOA and HC groups. *P < 0.05. d, Cohen’s d; BA, brain age; CA, chronological 
age; High Eqbound, upper equivalent boundary.
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PAD relates to cognitive function
We extended our investigation to examine the potential association 
between brain-aging acceleration and cognitive functions in patients 
with KOA. Given the observed associations between the GMV of the 
hippocampus and brain-aging acceleration, as well as the differences in 
the GMV of the hippocampus between the KOA and HC groups in both 
dataset 1 and dataset 2, we conducted a more specific examination of 
the relationship between brain-aging acceleration and memory func-
tion. To this end, we tested the associations between PAD and global 
cognitive and memory function measured by the Montreal Cognitive 
Function Assessment Scale (MoCA) and the Wechsler Memory Scale –  
Chinese Revision (WMS-CR), respectively, in dataset 2. As shown in  
Fig. 3c, PAD was significantly correlated with the memory quotient (MQ; 
WMS-CR total scores adjusted by age effects) (Pearson’s r = −0.274, FDR 
q = 0.010) but not MoCA scores (FDR q > 0.05) in patients with KOA. To 
test whether brain-aging acceleration was driven by pain characteristics 
experienced by patients with KOA, we measured the knee injury and 

osteoarthritis outcome scores (KOOS) of those patients. However, there 
was no significant correlation between any dimension of KOOS and PAD 
(FDR q > 0.05; Supplementary Fig. 8 and Supplementary Method 7).  
We also evaluated the impact of pain characteristics on the memory 
function of patients with KOA, yet found no significant correlation 
between any dimension of KOOS and MQ scores (FDR q > 0.05; Sup-
plementary Fig. 9).

PAD predicts longitudinal memory decline
Although we observed that brain-aging acceleration was associated 
with memory function in patients with KOA at the baseline session, a lon-
gitudinal examination was essential to identify whether these patients 
could experience accelerated memory decline and whether this altera-
tion could be predicted by PAD. In the present study, 43 patients in 
dataset 2 were invited to revisit and re-evaluate their cognitive and 
memory function after five years (follow-up session). Between the 
baseline and follow-up sessions, no significant changes in daily activity 
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Fig. 3 | Brain-aging acceleration in KOA and its cognitive relevance in dataset 
2. a, PAD was significantly increased (P = 0.020, two-tailed two-sample t-test) in 
cohorts with KOA compared to HCs. b, Spatial brain patterns in which the colored 
brain areas show both significant associations (Bonferroni P < 0.05, two-tailed 
Pearson correlation) between GMV and PAD and difference in GMV (P < 0.05, 
two-tailed two-sample t-test) between the KOA and HC groups. c, Scatter plots 
showing a significant association between baseline PAD and MQ scores in 
patients with KOA (right, FDR q = 0.010, two-tailed Pearson correlation), and no 
significant association between baseline PAD and MoCA scores in patients with 
KOA (left, FDR q = 0.658, two-tailed Pearson correlation). d, Box plots showing a 
significant difference between MQ scores measured in the baseline and follow-
up sessions (right, FDR q < 0.001, two-tailed paired-sample t-test, N = 43), and 
no significant difference between MoCA scores measured in the baseline and 

follow-up sessions (left, FDR q = 0.845, two-tailed paired-sample t-test, N = 43). 
e, Scatter plots showing a significant association between baseline PAD and 
reduction rate of MQ scores (left, P = 0.028, two-tailed Pearson correlation, 
N = 43) in a five-year follow-up and AD8 scores (right, P = 0.045, one-tailed 
Spearman correlation, N = 41) measured in the follow-up session in patients with 
KOA. f, Box plot showing a significant difference (P = 0.001, two-tailed two-
sample t-test, NKOA = 43, NHC = 104) in annual increases of PAD between patients 
with KOA and HCs during follow-up. AD8, Ascertain Dementia 8; MoCA, Montreal 
Cognitive Function Assessment Scale; MQ, memory quotient. *P < 0.05. The 
results in the scatter plots are displayed as mean estimates (solid lines) with 95% 
CIs (shaded areas). The results in box plots are displayed as the mean (bold red 
horizontal line), the first and third quartiles (lower and upper hinges) and 1.5× the 
interquartile range (whiskers).
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or adverse events were reported by these patients. We found that their 
MQ scores were significantly reduced (baseline session, 107.00 ± 15.52; 
follow-up session, 100.81 ± 15.49; d = −0.571, FDR q < 0.001, paired-
sample t-test) between the two sessions (Fig. 3d). It should be noted 
that the reduction in MQ scores was not significantly dependent on 
the patient’s chronological age (Pearson’s r = 0.224, P = 0.149). No sig-
nificant difference (baseline session, 25.26 ± 1.66; follow-up session, 
25.16 ± 2.88; d = −0.032, FDR q > 0.05, paired-sample t-test) was found 
in MoCA total scores between the two sessions.

Next, we investigated whether PAD at baseline could serve as a 
potential neural marker to predict memory decline in KOA. We found 
that the PAD at the baseline session showed a significant positive cor-
relation (Pearson’s r = 0.348, P = 0.028, FDR q < 0.05; Supplementary 
Fig. 3e) with the reduction rate (RR = (baseline − post)/baseline) of MQ 
in the five-year follow-up. The correlation was still significant (Pearson’s 
r = 0.375, P = 0.019; Supplementary Fig. 3 and Supplementary Method 
8) after adjusting for the effects of pain medications. Because memory 
decline is the most common first symptom and a hallmark of patients 
with dementia, we hypothesized that higher PAD would be related 
to the elevated risk of dementia. The Ascertain Dementia 8 (AD8) 
questionnaire, which includes eight questions to be answered ‘yes’ or 
‘no’, has been proven to be highly sensitive and specific in detecting 
early manifestations of dementia. In the follow-up session, 41 patients 
completed the AD8 dementia screening interview. Consistent with our 
hypothesis, we observed a significant positive correlation (Spearman’s 
ρ = 0.278, P = 0.045, FDR q < 0.05; Fig. 3e) between PAD at baseline 
and AD8 scores assessed in the follow-up session. After adjusting for 
the effects of pain medications, the correlation remained significant 
(Spearman’s ρ = 0.278, P = 0.046; Supplementary Fig. 3 and Supple-
mentary Method 8).

We conducted additional analyses to provide further evidence 
for the associations between brain-aging acceleration and memory 
decline, as well as the risks of dementia in KOA. These analyses were 
based on the individuals with KOA acquired from UKB, using more 
relaxed inclusion criteria than our primary analyses. The results 
revealed a significant positive correlation (Pearson’s r = 0.283, 
P = 0.038) between PAD at baseline and the reduction rate of memory 
function during follow-up. Moreover, PAD at the baseline of those 
diagnosed with dementia during follow-up exceeded the 90th per-
centile threshold (3.990 years versus 3.934 years) within the KOA 
cohort. The top 10% of individuals with KOA with higher PAD exhib-
ited a significantly elevated risk of dementia (OR = 25.297, P = 0.004, 
Fisher’s exact test) when compared to the remaining individuals in the 
KOA group. Further details regarding the inclusion criteria, numeric 
memory test and dementia diagnosis are provided in Supplementary 
Method 9.

Longitudinal alterations of PAD
Subsequently, we investigated the longitudinal alterations of brain-
aging acceleration in patients with KOA. For this analysis we included 
patients (N = 43) and HCs (N = 104) who had undergone a follow-up 
MRI. The results, illustrated in Fig. 3f, revealed a significantly higher 
annual increase of PAD ((PADPost − PADBaseline)/the interval between the 
two scans) in the KOA group compared to the HC group (d = 0.489, 
P = 0.001, two-sample t-test) between two sessions. These findings 
suggest a worsening trend in brain-aging acceleration over time for 
the KOA group.

Pleiotropic gene between PAD and CMP
Structural changes of the human brain are regulated by gene expres-
sion throughout life36. Accordingly, we explored the molecular 
genetic mechanism underlying brain-aging acceleration in KOA. 
We first examined the genetic overlap between PAD and KOA. After 
gathering GWAS summary statistics for PAD (N = 20,170) and KOA 
(case = 24,955, control = 378,169)32,33, we utilized a conjunctional 

FDR (cFDR) method to identify single-nucleotide polymorphisms 
(SNPs) that were associated with both PAD and KOA. We found five 
SNPs (Fig. 4a; FDR q < 0.05) located in two pleiotropic genes, SLC39A8 
(rs13107325) and NFAT5 (rs12447326, rs11643240, rs11075730 and 
rs6499237). We also performed cFDR analyses between PAD and 
the other three types of CMP (chronic back pain (case = 80,588, 
control = 36,816), chronic hip pain (case = 40,152, control = 11,364) 
and chronic neck pain (case = 72,887, control = 32,509)). The results 
showed that there was no pleiotropic gene between PAD and the 
other CMP conditions (FDR q > 0.05).

Gene SLC39A8 transcriptionally links with PAD
We further examined whether the pleiotropic genes between KOA and 
brain-aging acceleration affect the regional contribution to brain-aging 
acceleration in KOA using the post-mortem data of six healthy adult 
donors from the Allen Human Brain Atlas (AHBA). The regional con-
tributions to brain-aging acceleration in KOA were defined as the KOA 
neuroimaging phenotypes (see Methods for details). The spatial cor-
relations between KOA neuroimaging phenotypes and gene expression 
profiles (Fig. 4b) from AHBA were calculated. After correcting for spatial 
autocorrelation (SA), we found that the expression of gene SLC39A8 was 
negatively correlated with the KOA neuroimaging phenotypes in both 
datasets 1 (Spearman’s ρ = −0.329, FDR qSA = 0.010) and 2 (Spearman’s 
ρ = −0.365, FDR qSA = 0.010) (Fig. 4c). No significant correlation was 
found between the expression of gene NFAT5 and the KOA neuroimaging 
phenotypes (dataset 1: Spearman’s ρ = −0.292, FDR qSA > 0.05; dataset 2: 
Spearman’s ρ = −0.003, FDR qSA > 0.05). The specificity of gene SLC39A8 
was defined as its percentile on the ranked gene list, which was obtained 
by ranking the spatial correlation coefficients (that is, Spearman’s ρ) on 
the whole gene sets (15,980 genes) averaged across two datasets. On the 
ranked gene list, the spatial correlation coefficient of gene SLC39A8 was 
located in the top 1% (Fig. 4d). Next, we replicated the analyses within 
the cortical and subcortical regions separately. Across the subcorti-
cal regions (N = 18), the expression of gene SLC39A8 was negatively 
correlated with the KOA neuroimaging phenotypes in both datasets 
1 (Spearman’s ρ = −0.674, pSA = 0.001) and 2 (Spearman’s ρ = −0.649, 
pSA = 0.003) (Fig. 4c). No significant correlation was found across the 
cortical regions (N = 105) in either dataset (pSA > 0.05; Fig. 4c), although 
the same trend of negative correlation was observed. Considering that 
the hippocampus contributes to brain-aging acceleration of KOA in 
both datasets, we also examined the effects of gene SLC39A8 on the 
hippocampal neuroimaging phenotypes of KOA. Across tissue samples 
within the hippocampus, we also observed a significant correlation 
between the expression of gene SLC39A8 and the KOA neuroimaging 
phenotypes in both datasets 1 (Spearman’s ρ = −0.319, pSA = 0.048) and 
2 (Spearman’s ρ = −0.569, pSA = 0.002) (Fig. 4e).

PAD-related GO and cell-type enrichment
The Human Protein Atlas (https://www.proteinatlas.org) provides 
information on gene expression levels in the different cell types of 
brain tissue. In this atlas, gene SLC39A8 has the highest expression 
level in two glial cell types, microglial cells (Mic) and astrocytes (Ast) 
(Supplementary Fig. 10). Glial cells have been recognized as modula-
tors of the neuronal environment and leaders in the progression of 
neurodegenerative diseases37. This drove us to identify whether glial 
cells preferentially express the genes with strong correlations with KOA 
neuroimaging phenotypes. Based on the cell-specific gene markers of 
eight classes of brain cell (Ast, endothelial cells (End), excitatory neu-
rons (Ex), interneurons (In), Mic, oligodendrocytes (Oli), pericytes (Per) 
and oligodendrocyte precursor cells (OPC)) collected from a previous 
study38, we performed cell-enrichment analyses on the ranked gene list 
(Fig. 5a) using a fast-preranked gene set enrichment analysis (FGSEA) 
method. All eight cell classes showed significant enrichment (FDR 
q < 0.05; Fig. 5b) on the top or bottom of the ranked gene list (Supple-
mentary Appendix 1). Among the eight cell classes, Ast had the highest 
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Fig. 4 | Pleiotropic genes between KOA and brain-aging acceleration.  
a, Manhattan plot displaying five significant SNPs located in two pleiotropic 
genes in the cFDR analysis. The x axis shows chromosomal position and 
the y axis the significance (−log10FDR q; two-tailed). The red line marks the 
predefined cFDR significance level (FDR q = 0.05). b, Spatial maps of gene 
SLC39A8 expression (top), KOA neuroimaging phenotypes in dataset 1 (middle) 
and KOA neuroimaging phenotypes in dataset 2 (bottom). c, Scatter plots 
showing the spatial association (two-tailed Spearman correlation) between 
gene SLC39A8 expression and KOA neuroimaging phenotypes across the whole 
brain (left), cortical regions (middle) and subcortical regions (right) in dataset 

1 (top) and dataset 2 (bottom). d, Distribution of spatial associations (two-
tailed Spearman correlation) between KOA neuroimaging phenotypes and 
gene expression profiles across the brain. The dashed line indicates the top 1% 
negative-correlation genes among all 15,980 genes. The spatial association of 
gene SLC39A8 is located in the top 1% among all 15,980 genes. e, Scatter plots 
showing the spatial association (two-tailed Spearman correlation) between 
the expression of gene SLC39A8 and KOA neuroimaging phenotypes within the 
hippocampus (the contribution of 39 tissue samples located in the hippocampus 
to PAD) in dataset 1 (left) and dataset 2 (right). The results in the scatter plots are 
displayed as mean estimates (solid lines) with 95% CIs (shaded areas).
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ratio of core genes and normalized enrichment score (NES), and Mic 
had the second highest ratio of core genes and NES. These findings 
can be replicated (Supplementary Fig. 11) based on the gene markers 
(Supplementary Appendix 2) derived from another study39.

We identified two sets of Gene Ontology (GO) enrichment terms 
(Fig. 5c) that were significantly (FDR q < 0.01) enriched at the top 
decile of the ranked gene list. The identified biological process terms 
were mainly related to neurodevelopment, including the develop-
ment of neuron (GO:0048666, FDR q < 0.001), neuron projection 
(GO:0031175, FDR q < 0.001) and central nervous system (GO:0007417, 
FDR q < 0.001). The cellular component terms were mainly involved in 
the synapse (GO:0045202, FDR q < 0.001), postsynapse (GO:0098794, 
FDR q < 0.001), presynapse (GO:0098793, FDR q < 0.001), axon 
(GO:0030424, FDR q < 0.001) and dendrite (GO:0030425, FDR 
q < 0.001). No significant molecular function term was found (FDR 
q > 0.01). We did not find a significant GO enrichment term at the bot-
tom decile of the ranked gene list (FDR q > 0.01). A full list of GO enrich-
ment terms is provided in Supplementary Appendix 3.

Discussion
In this study we have developed a brain age model to estimate brain-
aging acceleration based on the morphological structures of the brain. 
Among several cohorts with different types of CMP, brain-aging accel-
eration characterized by increased PAD was only found in individuals 
with KOA. Importantly, this brain-aging acceleration in KOA was also 
validated in an independent dataset and showed continuous aggrava-
tion over time. The hippocampus, thalamus, insula, OFC, IFG, MFG, 
MTG, STG and cingulate gyrus were identified as key brain regions 
contributing to this acceleration. Furthermore, brain-aging accelera-
tion at baseline not only showed a correlation with baseline memory 
function, but it also predicted future memory decline and potential 
dementia risk. The SLC39A8 and NFAT5 genes exhibited pleiotropy 
between KOA and brain-aging acceleration, and the spatial expres-
sion patterns of gene SLC39A8 influenced the regional contributions 
to brain-aging acceleration in KOA. Additionally, genes preferentially 
expressed in Mic and Ast and those involved in synaptic structure and 
neurodevelopment showed the strong transcriptional associations 
with the regional contributions to brain-aging accelerations in KOA.

The MRI-based brain age model holds great promise for detecting 
disease risk40, and the performance of this model benefits from large 
training samples41. In this study we trained a model based on more 
than 5,000 healthy samples from a publicly available data source that 
allows a more accurate estimation of brain age42. Aging-associated 
alterations in the brain usually exhibit sex-specific characteristics6. 
Accordingly, we matched the age distribution between males and 
females in the training set to capture a sex-neutral brain-aging trajec-
tory. After training, we tested the trained model on a hold-out set and 
showed that the predicted brain age closely matched an individual’s 
chronological age. In addition, using data from UKB repeat visits, we 
showed highly consistent brain-age estimates within participants 
across two MRI scans, suggesting high scan–rescan stability of our 
brain model. Overall, our trained model provides a robust and reliable 
estimation of an individual’s brain age.

Applying the brain age model to several common types of CMP, we 
found brain-aging acceleration only in the chronic knee pain cohorts, 
suggesting heterogeneous patterns of brain aging in CMP. Subgroup 
analysis in the KOA cohort across two datasets revealed a replicable 
brain-aging acceleration characterized by increased PAD. Among the 
brain areas playing a key role in brain-aging acceleration in KOA, the 
contribution of the hippocampus was identified across two datasets. 
The hippocampus is critically involved in several cognitive domains, 
particularly memory encoding and consolidation43. It is also related to 
cognitive impairments in neurodegenerative diseases and is especially 
vulnerable in the early stages of Alzheimer’s disease44. A contribution of 
the thalamus to brain-aging acceleration in KOA was found in dataset 1.  

The thalamus is densely connected with the hippocampus and plays 
a central role in memory retrieval by modulating hippocampal–tha-
lamic–cortical networks45. Volume losses of the hippocampus and 
thalamus can be found in patients with Alzheimer’s disease, even in the 
mild stage, and are correlated with cognitive impairment46. In line with 
these findings, the brain regions associated with cognitive processing 
and memory function underlie brain-aging acceleration in KOA.

Our longitudinal investigation revealed that the memory function 
(measured by age-adjusted MQ) of patients with KOA was reduced after 
five years, but no reduction was observed in global cognitive function 
(measured by MoCA). This result implies that memory function might 
be one of the most vulnerable or earliest impaired cognitive domains 
in patients with KOA. Progressive memory decline is a hallmark of 
dementia, but it is hard for patients to be aware of this subjectively47. 
Morphological alterations in the brain usually precede apparent cogni-
tive impairments, making them potentially sensitive to the accumula-
tion of biological impairments for dementia48,49. PAD is sensitive to 
integrating and quantifying subtle but spatially widespread structural 
abnormalities associated with cognitive deficits17. Here we linked the 
pattern of morphological abnormalities at baseline and longitudinal 
memory decline, demonstrating that higher brain-aging acceleration 
at baseline can predict more considerable memory decline in patients 
with KOA. Moreover, a higher PAD in such patients was associated with 
a higher risk of dementia estimated by AD8, a sensitive screening tool 
with reliable discriminative power for early-stage dementia50. In line 
with this discovery, our supplementary analyses under relaxed inclu-
sion criteria revealed that individuals in the KOA cohort with PAD in 
the top 10% exhibited a higher risk of dementia than the remaining 
individuals. Overall, these findings highlight the potential of brain-
aging acceleration as a prognostic biomarker for cognitive decline and 
dementia in patients with KOA. Furthermore, between the MRI scans at 
the baseline and follow-up sessions, PAD was not constant, but instead 
further increased in patients with KOA, emphasizing the necessity to 
uncover the mechanism underlying brain-aging acceleration to prevent 
further cognitive impairments.

In the present study, increased PAD in patients with KOA was not 
explained by pain characteristics or physical activity. We thus sought to 
examine whether there is any gene underlying brain-aging acceleration 
in KOA. Consistent with neuroimaging findings, we found shared risk 
genes between PAD and KOA, but not the other types of CMP, providing 
genetic evidence for the heterogeneous patterns of brain aging in CMP. 
The shared risk gene SLC39A8 encodes a transmembrane protein that 
plays critical functions in the onset of inflammation and is responsible 
for transporting several divalent cations related to synaptic plasticity 
and cognitive deficits51. Using imaging transcriptomics analysis, we 
consistently identified spatial transcriptional associations between 
gene SLC39A8 and subcortical KOA neuroimaging phenotypes across 
two datasets. This result is consistent with previous research showing 
that the missense mutation of rs13107325 in gene SLC39A8 is associated 
with structural variations in the subcortex52. In the brain, gene SLC39A8 
is mainly expressed in Mic and Ast. Ex vivo studies have indicated that 
the regional heterogeneity of genetic transcription, particularly within 
Mic and Ast, predetermines different regional susceptibilities to aging 
and neurodegenerative diseases53,54, causing distinct changing trajecto-
ries in different cognitive domains55. Within the hippocampus, we also 
observed spatial transcriptional associations between gene SLC39A8 
and the KOA neuroimaging phenotypes. This finding is supported by 
earlier evidence that glial cells and the release of zinc might modulate 
hippocampal synaptic plasticity56,57.

Based on enrichment analyses, we found that the gene mark-
ers of Mic and Ast and those associated with synaptic structure and 
neurodevelopment show strong spatial transcriptional associations 
with KOA neuroimaging phenotypes. Some studies have suggested 
that inflammation might modify brain structure in degenerative dis-
eases via immune cells of the central nervous system (Mic and Ast)58,59. 

http://www.nature.com/natmentalhealth
http://amigo.geneontology.org/amigo/term/GO:0048666
http://amigo.geneontology.org/amigo/term/GO:0031175
http://amigo.geneontology.org/amigo/term/GO:0007417
http://amigo.geneontology.org/amigo/term/GO:0045202
http://amigo.geneontology.org/amigo/term/GO:0098794
http://amigo.geneontology.org/amigo/term/GO:0098793
http://amigo.geneontology.org/amigo/term/GO:0030424
http://amigo.geneontology.org/amigo/term/GO:0030425


Nature Mental Health

Article https://doi.org/10.1038/s44220-024-00223-3

Progression of KOA involves complex alterations in the inflamma-
tory environment. The increased circulating concentrations of pro-
inflammatory cytokines might alter brain structures via microglia 
and astrocytic function by means of abnormal synaptic pruning and 
the subsequent effect on GMV60,61, especially in the hippocampus62. 

In addition, the interaction of the proinflammatory cytokine and glial 
cells might increase susceptibility to neurodegenerative diseases and 
cognitive impairments by producing dysregulation of synaptic plastic-
ity and transmission63,64. Increased neuroinflammation in the thalamus 
of patients with KOA has been revealed by some neurometabolites 
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Fig. 5 | Enrichment analysis on genes with high correlations with KOA 
neuroimaging phenotypes. a, The ranked gene list was obtained by averaging 
the spatial correlation coefficients of KOA neuroimaging phenotypes on the 
whole gene sets (15,980 genes) across two datasets then ranking. b, Cell-
enrichment analysis was performed on the ranked gene list. A total of eight sets 
of cell-specific gene markers were enriched on the top or bottom of the ranked 
gene list (top). The FGSEA enrichment plot shows that gene markers of Mic and 

Ast were enriched at the top of the ranked gene list (bottom). c, GO enrichment 
terms. The top gene deciles present the greatest number of enrichment terms 
in both BP and CC ontological categories (left). For the results of enrichment 
analysis on the top gene deciles, only the most significant ten enrichment terms 
are displayed in the figure (right). A one-tailed hypergeometric test was used for 
determining statistical significance (FDR-B&Y correction). |NES|, absolute value 
of the NES. BP, biological process; CC, cellular component.
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regarded as glial markers65. A positron emission tomography study 
using an in vivo marker of Mic and Ast has revealed a positive correla-
tion between neuroinflammation in the brain and cognitive impairment 
score66. Taken together, biological processes involving glial cells and 
inflammation might connect KOA to brain-aging acceleration. We 
also found indications that inflammation may play a role in the het-
erogeneous pattern of brain aging in common types of chronic pain 
(Supplementary Fig. 12 and Supplementary Method 10). Our results 
show that, among the CMP groups examined, those suffering from 
chronic knee pain had the highest levels of C-reactive protein (CRP), 
an indicator of systemic inflammation, and the KOA group had higher 
CRP levels than the group with chronic knee pain. Moreover, the het-
erogeneous patterns of brain-aging acceleration were significantly 
correlated with variation in the magnitude of CRP level increases across 
different CMP groups.

Several limitations should be considered when interpreting our 
findings. First, the types of CMP were defined based on painful sites 
in the body because of the limitations of the dataset employed in the 
present study. This approach may not be optimal, as it does not always 
reflect the different underlying pathological mechanisms. Future 
investigations on PAD of CMP could integrate the types of CMP based on 
pathological similarity. Second, the CMP in UKB is mainly self-reported 
by individuals. Although some primary findings in UKB have been 
replicated in patients with KOA with a clinical diagnosis, the results of 
other types of CMP deserve further validation in diagnosed patients. 
Third, the sample size for the longitudinal analysis was relatively small, 
and the assessment of dementia risk was reliant on a questionnaire. 
Although the AD8 questionnaire has demonstrated notable sensitiv-
ity and specificity in identifying early signs of dementia, and our sup-
plementary analyses under relaxed inclusion criteria supported the 
primary finding, further prospective studies incorporating a clinical 
dementia diagnosis and larger sample sizes are crucial for corroborat-
ing our findings. Finally, our findings point to the promise of brain-
aging acceleration as a prognostic biomarker for dementia in KOA, but 
brain-aging acceleration alone cannot fully explain the accumulated 
biological impairments in the course of aging. To obtain a clinically 
implementable risk score for dementia, future works should combine 
brain age with other aging-related biological information, such as DNA 
methylation and telomere length.

In conclusion, we have trained a brain age model based on a large 
sample and identified specific brain-aging acceleration in individuals 
with KOA, contrasting with several common types of CMP across two 
independent datasets. This acceleration was primarily driven by the 
brain structures for cognitive processing and is related to longitudinal 
memory decline and dementia risk. Furthermore, we have demon-
strated that SLC39A8—a gene highly expressed in glial cells—might be 
a key genetic factor underpinning this acceleration. Gene markers of 
Mic and Ast and those involved in synaptic structure and neurodevelop-
ment were particularly strong transcriptional associates of the regional 
contributions to this acceleration. Together, we have demonstrated the 
heterogeneity of brain aging in CMP and identified a distinct heritable 
brain-aging acceleration pattern linking KOA to dementia by providing 
an integrative biological profile that connects specific genes, molecular 
processes and cell classes with morphological alterations.

Methods
Study design
The present study explored the patterns of brain aging in four com-
mon types of CMP (chronic knee pain, chronic back pain, chronic neck 
pain and chronic hip pain) and the cognitive relevance and molecular 
genetic basis of brain-aging acceleration by performing five steps of 
analyses (Fig. 1c) across several healthy and CMP cohorts (Fig. 1b). In 
step 1, we trained and validated a brain age model using a training set 
(N = 5,202) and a hold-out set (N = 1,523) consisting of healthy individu-
als from UKB. In step 2, we first applied the brain age model to six CMP 

cohorts (the aforementioned four types of CMP and two subgroups 
of the chronic knee pain cohort) from UKB (dataset 1; N = 2,427) to 
estimate their distinct patterns of brain aging. Following identifi-
cation of the CMP cohort that showed brain-aging acceleration, we 
validated the findings based on the same type of CMP cohort (that is, 
the KOA cohort in this study) and HCs from a locally collected dataset  
(dataset 2, N = 192). In steps 3 and 4, we further extended the findings 
based on cognitive and clinical measures acquired from dataset 2. 
Specifically, step 3 investigated the associations of brain-aging accel-
eration with global cognitive function, memory function and pain 
characteristics in patients with KOA from dataset 2. Step 4 included the 
KOA patients from dataset 2 who completed a five-year follow-up. The 
associations of their brain-aging acceleration at baseline with cogni-
tive and memory decline, as well as dementia risk during follow-up, 
were investigated. In step 5, the molecular genetic basis of brain-aging 
acceleration was examined based on KOA neuroimaging phenotypes 
and publicly available genetic data.

Participants
The data used in the present study were acquired from two independent 
data sources: UKB and the Affiliated Rehabilitation Hospital of Fujian 
University of Traditional Chinese Medicine. This study was approved by 
the Human Research Ethics Committee at the Institute of Psychology of 
Chinese Academy of Sciences (ethical approval no. H21030). The study 
followed the STROBE (strengthening the reporting of observational 
studies in epidemiology) statement67.

The present study included a subset of participants from UKB 
(application ID 71901) consisting of 6,725 healthy individuals and 
2,427 individuals with CMP. UKB has been approved to obtain and dis-
seminate data and samples by the North West Multi-Centre Research 
Ethics Committee (http://www.ukbiobank.ac.uk/ethics), and these 
ethical regulations cover the work in the present study. All participants 
voluntarily participated in the experiments carried out by UKB and 
provided written informed consent. To develop a brain age model, 
6,725 healthy individuals were subdivided into a training set and a 
hold-out set. A proper splitting strategy for data is necessary to obtain 
a credible estimation for model performance68. According to a recent 
technical study on brain age42, 5,000 samples are sufficient to provide 
good performance, with a further increase in the number of samples 
producing few improvements. Moreover, different age distributions 
between males and females may also cause potential bias for a brain 
age model because of differential brain developmental trajectories by 
sex6,69. In the present study, we randomly split 6,725 healthy individuals 
into a training set and a hold-out set 10,000 times, and determined an 
optimal split with the following criteria: (1) the number of samples in 
the training set was more than 5,000, (2) the age distribution between 
males and females was matched in both the training and hold-out sets 
and (3) the number of samples in the hold-out set was not less than any 
CMP cohort. The similarities between age distributions were estimated 
using Jensen–Shannon divergence, which is a common method for 
symmetrically measuring the similarity between two probability dis-
tributions70. In this procedure, 5,202 healthy (male = 2,394) individuals 
were assigned to the training set, and the remaining 1,523 healthy indi-
viduals (male = 701) were assigned to the hold-out set. Subsequently, 
2,427 individuals who reported CMP only at one body site over three 
months via a touchscreen questionnaire (category ID 100048) were 
subdivided into four cohorts of dataset 1 according to their painful site: 
chronic knee pain (N = 982), chronic back pain (N = 591), chronic neck 
pain (N = 528) and chronic hip pain (N = 326). The chronic knee pain 
cohorts were further subdivided into the KOA cohort (N = 161) and the 
cohort without KOA (N = 821). Baseline T1-weighted MRI images were 
collected from all included participants. A total of 104 participants in 
the hold-out set completed a second MRI scan two to six years after the 
baseline scan. See Supplementary Fig. 13 and Supplementary Table 5 
for detailed inclusion criteria and demographic information.
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The data acquired from the Affiliated Rehabilitation Hospital 
of Fujian University of Traditional Chinese Medicine included 133 
patients diagnosed with KOA and 59 sex- and age-matched HCs. The 
KOA patients were diagnosed in the left or right knee based on the 
diagnostic criteria of the American Rheumatism Association by an 
orthopedic physician. These patients achieved a grade 2–3 KOA on 
the Kellgren–Lawrence scale on a standing anterior–posterior X-ray. 
These 192 individuals were assigned to dataset 2. The present study 
obtained approval from the Medical Ethics Committee of the Affiliated 
Rehabilitation Hospital of Fujian University of Traditional Chinese 
Medicine and the second affiliated hospital of Fujian University of 
Traditional Chinese Medicine. Written informed consent was obtained 
from all participants, and registration was completed on the Clinical 
Trial Registry (http://www.chictr.org.cn/register.aspx; clinical trial 
registration no. ChiCTR-IOR-16009308). Baseline T1-weighted MRI 
images were collected from all included participants. Forty-three 
participants completed a repeat MRI scan and cognitive assessments 
in the five-year follow-up. Participants were compensated monetarily 
for each complete MRI session. See Supplementary Fig. 14 and Sup-
plementary Table 6 for further descriptions of the inclusion criteria 
and demographic information.

Acquisition and preprocessing of imaging data
T1-weighted MRI images acquired from UKB are publicly available. 
Details about the image acquisition are available at the UKB website 
(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367) and in an 
open-source document (https://biobank.ndph.ox.ac.uk/showcase/
showcase/docs/brain_mri.pdf). T1-weighted MRI images in dataset 
2 were acquired on a 3.0-T GE 750 scanner and eight-channel receiver 
head coil (General Electric) with the following parameters: slice thick-
ness = 1 mm, flip angle = 15°, field of view (FOV) = 240 mm and 160 slices 
in acquisition.

T1-weighted MRI images were preprocessed using the Compu-
tational Anatomy Toolbox (CAT12, http://www.neuro.uni-jena.de/
cat) with default settings, primarily including segment, normaliza-
tion, modulation and smooth. In brief, denoised and bias-corrected 
T1-weighted MRI images were spatially registered to tissue probability 
maps provided by statistical parametric mapping (SPM) (http://www.
fil.ion.ucl.ac.uk/spm) and segmented into gray matter, white matter 
and cerebrospinal fluid. After being spatially normalized into stand-
ard stereotactic Montreal Neurological Institute space, the modu-
lated GMV, compensated for the effect of spatial normalization, was 
smoothed with a 4-mm full-width at half-maximum Gaussian kernel 
and resampled to 3-mm spatial resolution. The estimated intracranial 
volume (TIV) was calculated as the summation of the gray matter, white 
matter and cerebrospinal fluid volumes in native space.

Training and generalization of the brain age model
In the present study, the brain age model was constructed based on 
elastic net regression, a technique commonly used for brain age estima-
tion71. In this model, the hyperparameter α was pre-set to 0.5 to balance 
the weight of L1-norm versus L2-norm regularizations. Regularization 
coefficient λ was tuned using a fivefold cross-validation on the training 
set, with 50 repetitions to realize different partitions on the dataset. 
The optimal λ determined by the cross-validation procedure was used 
to develop a final predictive model on the entire training set. Before 
training, GMV features were first standardized and transformed into 
features embedded in low-dimensional subspaces to speed up the 
training process and avoid overfitting. Specifically, each GMV feature 
was standardized (minus the mean µ and scaled to the unit variance σ) 
independently across training samples. Principal component analysis 
(PCA) was subsequently run on the standardized GMV features, and 
the top 500 components (explaining 68% of the total variance) were 
used as the feature inputs of the predictive model. Standardization 
and PCA were only performed on the training set, and the resulting 

transformation parameters were stored and later applied to unseen 
test data. The performance of the brain age model was assessed on the 
hold-out set, which was independent of the model’s training. We used 
the Pearson’s correlation coefficient and MAE between predicted age 
and chronological age to measure the accuracy of the age estimation. 
The PCA and elastic net regression were run on MATLAB.

Calculation of PAD
After assessing the model performance, the established age predic-
tive model was applied to preprocessed MRI data in datasets 1 and 
2 to predict an individual’s brain age. Next, an individual’s PAD was 
computed by subtracting their chronological age from their brain 
age. To adjust for the confounding effect caused by sex and age, as 
frequently reported in previous studies on brain age, we constructed 
a regression model according to

Brain age = B0 + B1 × chronological age + B2 × sex + ε (1)

as advised by a previous technical study19, where B0 is the intercept, B1 
and B2 are the effects of chronological age and sex on brain age, respec-
tively, and the residuals ε represent the corrected PAD controlling for 
sex and chronological age. The regression model was constructed only 
in the training set, and the resulting regression coefficients were used 
for bias removal in the test data as follows:

Corrected PAD = brain age − (B0 + B1 × chronological age + B2 × sex)
(2)

The corrected brain age was calculated by adding the chronologi-
cal age and corrected PAD, as follows:

Corrected brain age = chronological age + corrected PAD (3)

In the present study, the corrected PAD and brain age were used 
to perform the following statistical analyses.

Cognitive evaluation
In dataset 2, cognitive evaluations were conducted using MoCA72 and 
WMS-CR73. MoCA evaluates comprehensive cognitive ability, which is 
composed of seven different cognitive domains (visuospatial/executive 
functions, 5-min delayed verbal memory, verbal memory registration 
and learning, attention, naming, abstraction and orientation). WMS-CR 
measures seven different types of memory function (mental control, 
picture recognition, visual reproduction, associative learning, touch, 
comprehension memory and digit span). By adjusting for age effects 
from WMS-CR total scores, MQ was further calculated to measure the 
memory function corrected for age-related decline. We used MoCA 
total scores and MQ to assess the global cognitive function and memory 
function of patients with KOA, respectively. A higher total score of 
MoCA or MQ means better function. The AD8 questionnaire, a brief 
informant-based measure with eight questions, was used to evaluate 
dementia risk in the patients74.

Genetic pleiotropy analysis
The cFDR method, inspired by the empirical Bayes statistical frame-
work, is specifically designed to be applied to polygenic traits and dis-
orders characterized by numerous subtle genetic effects. It combines 
GWAS summary statistics of two traits to identify pleiotropic loci that 
inform shared genetic risks, enabling the discovery of connections 
between brain structure and diseases75, as well as between different 
diseases76,77, and is tailored for scenarios characterized by dense ele-
ments78,79. In the present study we employed cFDR analysis to identify 
pleiotropic genes that were significantly associated with both KOA and 
brain-aging acceleration. We collected the GWAS summary statistics for 
KOA and brain-aging acceleration from previous studies32,33 to perform 
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the cFDR analysis. We also investigated whether there are pleiotropic 
genes between brain-aging acceleration and the other types of CMP 
(chronic back pain, chronic hip pain and chronic neck pain)80. The cFDR 
analysis was run using the MATLAB-based pleiofdr toolbox (https://
github.com/precimed/pleiofdr).

Preprocessing of gene expression data
Human gene expression data in the brain were acquired from AHBA, 
a publicly available transcriptional atlas provided by the Allen Insti-
tute34. A total of 3,702 spatially distributed tissue samples in AHBA 
were collected from the brains of six healthy adult donors without a 
history of psychiatric or neuropathological disorders. More details are 
available on the website of the Allen Institute (http://www.brain-map.
org). Given that the human reference genome is constantly updated, 
reannotating probes to their corresponding genes is essential to obtain 
more accurate inferences. We completed probe-to-gene reannotation 
based on Allen probe sequences, provided using the Re-annotator 
toolkit (https://sourceforge.net/projects/reannotator). Following 
reannotation, we used the abagen toolbox (https://www.github.com/
netneurolab/abagen)81 to preprocess microarray data using the 
default procedures. Briefly, probes were first filtered to discriminate 
expression signals from background noise. Only the probe with the 
highest differential stability was retained for each gene, resulting 
in 15,981 genes with a single expression value. Then, tissue samples 
were assigned to brain regions parcellated by the Brainnetome Atlas  
(http://atlas.brainnetome.org). In total, 123 brain regions of the left 
hemisphere (105 cortical regions and 18 subcortical regions) were 
considered for the following analyses, but there were only two donors 
with tissue samples from the right hemisphere34. The between-sample 
and inter-donor variabilities were corrected by combining the robust 
sigmoid function and min–max function. In this procedure, one gene 
was discarded due to poor normalization. Finally, corrected genetic 
expression profiles were averaged across the six donors, resulting in a 
123 × 15,980 expression matrix, with each column denoting the regional 
expression pattern of a gene.

Imaging transcriptomic analysis
The contribution of a brain voxel to brain-aging acceleration is affected 
by both the influence of GMV in that voxel on PAD and the impact of 
the presence of the disease on the GMV of that voxel. Therefore, we 
defined the contribution of a brain voxel to brain-aging acceleration as 
the product of the regression coefficients representing the association 
between group and GMV, and the association between GMV and PAD. 
These two regression coefficients are derived from two models, one 
with group and GMV as independent and dependent variables, respec-
tively, and the other with GMV and PAD as independent and dependent 
variables, respectively. Both models incorporate chronological age, sex 
and TIV as covariates. The contributions of brain voxels to brain-aging 
acceleration in the whole brain were averaged into 123 brain regions 
in the left hemisphere parcellated by the Brainnetome Atlas, yielding 
region of interest (ROI)-wise neuroimaging phenotypes that present 
the contributions of 123 brain areas to brain-aging acceleration. Sub-
sequently, the spatial correlation coefficients (Spearman’s ρ) between 
the expression values of pleiotropic genes in AHBA and ROI-wise neuro-
imaging phenotypes were computed separately in datasets 1 and 2. In 
imaging transcriptomic studies, the false positive rate can be inflated 
by intrinsic expression or phenotype correlations among neighbor-
ing brain regions (that is, spatial autocorrelations)82,83. We corrected 
this spatial autocorrelation effect using the BrainSMASH package  
(https://brainsmash.readthedocs.io/en/latest/index.html), which 
introduces a spatially constrained null model84. To evaluate the speci-
ficity of a gene, spatial correlation coefficients (Spearman’s ρ) for each 
AHBA gene were calculated, averaged across two datasets, and ranked. 
The target gene was considered to be specific if it was ranked within 
the top 5% of the ranked gene list (15,980 genes).

Enrichment analysis
ToppGene (https://toppgene.cchmc.org) was employed to iden-
tify biological enrichment terms of the genes highly correlated to 
neuroimaging phenotypes. Matching previous approaches38,82, the 
aforementioned ranked gene list was first split into evenly sized gene 
deciles, then gene enrichment analyses were performed on the top 
decile. Three GO classes (biological process, cellular component and 
molecular function) were considered in the present study (q < 0.01, 
one-tailed hypergeometric test, FDR-B&Y correction). To perform 
cell-enrichment analysis, we acquired cell-specific transcriptional 
gene markers of 16 cell classes (Ast, End, Ex1, Ex3, Ex4, Ex5, Ex8, In1, In3, 
In4, In6, somatostatin, Mic, Oli, Per and OPC) from a previous study38 
that identified cell-specific gene markers based on transcriptional 
data in the frontal (BA 6/9/10) and visual cortex (BA17) obtained from 
the Gene Expression Omnibus85. In this study38, differential expres-
sion within each cell class, in relation to all other classes, was calcu-
lated, and genes exhibiting significantly positive differential gene 
expression were defined as distinctive cell-specific gene markers of 
the respective cell class. Following a previous study that performed 
a clustering analysis on multiple cell classes86, we further assigned 
Ex and In subtypes into Ex and In cell classes, respectively, resulting 
in eight canonical cell classes (Ast, End, Ex, In, Mic, Oli, Per and OPC). 
Based on the eight sets of cell-specific gene markers (Supplementary 
Appendix 4), FGSEA87 was conducted to identify cell classes in which 
the gene markers were over-represented on the top or bottom of the 
ranked gene list. Single-cell FGSEA was run on the R-based cluster-
Profiler package (https://bioconductor.org/packages/release/bioc/
html/clusterProfiler.html). Two measures, the ratio of core genes and 
NES, were used to evaluate the degree of enrichment. The enrichment 
score was calculated by walking down the ranked gene list from the 
top. Through the ranked gene list, the enrichment score was increased 
when we encountered a gene belonging to the predefined gene set and 
decreased when it was not encountered88. Because the increase in the 
magnitude depends on the spatial correlation coefficients of the gene, a 
higher enrichment score would be obtained if gene markers were over-
represented on the top or bottom of the ranked gene list. Enrichment 
scores were further transformed to NES by adjusting for variations 
in the gene set size of several cell classes. The ratio of core genes was 
calculated using a leading-edge analysis and represented how many 
genes directly contributed to the enrichment score88. Because cell-
specific gene markers are sensitive to the acquisition methodology, 
analysis process or thresholding, we replicated FGSEA on the cell-
specific gene markers (Supplementary Appendix 5) acquired from  
another study39.

Statistical analysis
The performance of the brain age model was estimated using Pearson’s 
correlation coefficient and MAE between the predicted age and chrono-
logical age. A higher Pearson’s correlation coefficient and lower MAE 
indicate better predictive power of the brain age model.

The equivalence between the longitudinal change of the predicted 
age and chronological age in the hold-out set was examined using 
equivalence testing (one-tailed, P < 0.05), with 0.452 years as the upper 
equivalence bound (assuming that the error per year was no more 
than 0.2 years). Two-sample t-tests (two-tailed, P < 0.05) were used 
to perform between-group inference on PAD and annual increases of 
PAD during follow-up, with chronological age, sex and TIV included as 
covariates. The differences in cognitive measures between the baseline 
and follow-up sessions were estimated using a paired-sample t-test 
(two-tailed, P < 0.05). The relationships between PAD and cognitive 
measures and clinical scores were estimated using Pearson correla-
tion analyses (two-tailed, P < 0.05) with chronological age, sex and 
TIV included as covariates. Considering that the AD8 score is a ranked 
variable and has strong non-normality (a positive-skewed distribution), 
we used Spearman correlation analyses (one-tailed, P < 0.05) to test the 

http://www.nature.com/natmentalhealth
https://github.com/precimed/pleiofdr
https://github.com/precimed/pleiofdr
http://www.brain-map.org
http://www.brain-map.org
https://sourceforge.net/projects/reannotator
https://www.github.com/netneurolab/abagen
https://www.github.com/netneurolab/abagen
http://atlas.brainnetome.org
https://brainsmash.readthedocs.io/en/latest/index.html
https://toppgene.cchmc.org
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html


Nature Mental Health

Article https://doi.org/10.1038/s44220-024-00223-3

relationship between PAD and AD8 scores with chronological age, sex 
and TIV included as covariates. Consistent with previous studies39,89, 
Spearman correlation analyses (two-tailed, P < 0.05) were conducted 
to calculate the spatial correlation between the neuroimaging pheno-
types and gene expression. The statistical results were corrected for 
multiple comparisons with FDR.

The associations between the GMV of brain areas and PAD were 
estimated using Pearson correlation analyses (two-tailed, P < 0.05) with 
chronological age, sex, TIV and disease groups included as covariates, 
followed by the Bonferroni multiple testing correction. Between-
group inferences on GMV were performed using two-sample t-tests 
(two-tailed, P < 0.05), with chronological age, sex and TIV included 
as covariates.

The statistical significance of cell-enrichment analyses was 
obtained by permuting the gene symbols of the ranked gene list. The  
P value of the observed enrichment was calculated relative to the 
null distribution produced from permuted data and then adjusted 
to account for multiple testing corrections using the FDR procedure. 
To obtain a stable null distribution, we permuted the gene symbols 
100,000 times.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this Article.

Data availability
The MRI data are from multiple sources. The data acquired from UKB 
are publicly available upon third-party authorization (https://www.
ukbiobank.ac.uk/register-apply). The GWAS summary statistics of 
KOA were downloaded from https://www.ebi.ac.uk/gwas/publica-
tions/30664745. The GWAS summary statistics for chronic hip pain, 
chronic back pain and chronic neck pain were downloaded from  
https://gwas.mrcieu.ac.uk/datasets with the category codes as ukb-
b-133, ukb-b-8463 and ukb-b-16118, respectively. Human brain gene 
expression data in AHBA can be downloaded from http://human.brain-
map.org/static/download. Individual data used to estimate brain age 
in dataset 2 can be accessed via ScienceDB (https://doi.org/10.57760/
sciencedb.psych.00120).

Code availability
The publicly available software for the analyses has been described 
in the Methods of our manuscript. Our custom analysis code and the 
developed brain age model can be accessed at https://github.com/
tulab-brain/BrainAgeCP.
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