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Chronic musculoskeletal pain (CMP), a prevalent and heterogeneous

® Check for updates condition characterized by persistent painin various body parts, isaleading
cause of disability worldwide and greatly affects a patient’s brain. Apart from
experiencing pain, older adults with CMP also have accelerated cognitive
decline and higher dementia risk with limited understanding of biological
mechanism underlying the associations between CMP and dementiarisk.

A multiscale study to disentangle pathological brain aging from normal
brain aging may reveal the underlying mechanisms. Using large-scale, cross-
sectional and longitudinal cohorts (V=9,344), we have developed an MRI-
based brain age model (V= 6,725) to evaluate the difference between brain
age and chronological age, termed ‘predicted age difference’ (PAD), across
several common types of CMP (N =2,427). Our study unveils significantly
increased PAD in knee osteoarthritis (KOA) cohorts versus healthy controls,
and validatesitinanindependent dataset (N =192), suggesting a pattern of
brain-aging acceleration in KOA. This acceleration was contributed by the
hippocampusin both datasets and predicted memory decline and dementia
incidents during follow-up. The SLC39A8 gene showed pleiotropy between
brain-aging accelerations and KOA and exhibited spatially transcriptional
associations with the regional contributions to brain-aging accelerations. The
genes exhibiting spatially strong transcriptional associations with regional
contributions were highly expressed in microglial cells and astrocytes, and
were mainly enriched in synaptic structure and neurodevelopment. These
findings highlight a heterogeneous pattern of brain aging in CMP and reveal
aheritable morphological pattern that links brain-aging acceleration to
cognitive decline and an elevated risk of dementiain KOA.

Elderly individuals disproportionately suffer from chronic musculo-  During the aging process, cognitive decline and increased dementia
skeletal pain (CMP), amajor source of disability that affects morethan  incidents are associated with the accumulation of impairmentsin the
40% of the world’s population’. Increasing evidence suggests that,apart  brain, at scales ranging from the molecular genetic level to cellular
from persistent pain, older adults with CMP are also subject to accel- and morphologicallevels® . However, the accumulation of biological
erated cognitive decline and an increased probability of dementia®®.  impairments has substantial heterogeneity inindividuals with different
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lifestyles, health conditions, environmental factors and geneticrisk fac-
tors, and this modulates the rate of aging®'. Thus, characterizing bio-
logical brainaging rather than chronological aging will have substantial
implications in terms of explaining variations between cohorts and
individuals regarding memory decline and dementia risks with CMP.

Thebrainplays a pivotal role inregulating mental healthin relation
to cognition, emotion and behavior®. The anatomical structure of the
brain constrains its functional organization and thus offers insights
into mental health'>. The structure of the brain changes constantly with
increasing chronological age. These changes mostly reflect the normal
aging process, but they can also be modulated by pathological condi-
tions and genetic predisposition>™, Age prediction using magnetic
resonance imaging (MRI) dataand machine-learning techniques could
provide arobust estimation of an individual’s ‘brain age’ by assessing
the age of braintissues fromanormative lifespan trajectory’. Studies
suggest that the deviation of anindividual’s brain age from chronologi-
cal age is associated with cognitive function'”*®. The rate of brain aging
canbeaccelerated by some disease exposures that have critical rolesin
the emergence and development of dementia'. For example, a higher
brainage relative to chronological age hasbeen found in patients with
schizophrenia®, depression* and alcohol dependence®. These studies
suggest that brain age may hold prognostic value, potentially predict-
ing cognitive decline and dementia risks by assessing the individual
differencesintheinteraction of brain aging and CMP.

CMP is heterogeneous in etiology, spanning a wide range of
genetic”’, environmental® and biological factors®. This complexity
suggests that brain-aging trajectories in different CMP conditions
may exhibit substantial heterogeneity. For example, chronic knee
or hip pain, often attributed to knee osteoarthritis (KOA) and hip
osteoarthritis, is frequently accompanied by persistent low-grade
inflammation, which has been widely acknowledged as a hallmark of
biological aging®. There is also evidence supporting the association
of osteoarthritis with accelerated memory decline and an elevated
risk of dementia®*®, A recent study has shown that osteoarthritis can
accelerate the accumulation of amyloid-p and tau proteinsin the brain,
which are key pathological events associated with the development of
Alzheimer’s disease”, highlighting the possibility that individuals with
osteoarthritis may be at a higherrisk of experiencing the acceleration
ofbrainaging.

A few studies have assessed brain-aging acceleration in CMP***,
but several issues remain to be addressed (Fig. 1a). First, studies so
far have been smallin scale and have focused on a single type of CMP,
hindering assessment of the clinical and mechanistic distinctions. It
is unclear whether common types of CMP share a general pattern or
follow distinct patterns of brain-aging trajectory. Second, a longitu-
dinal investigation is warranted to uncover the potential of brain age
as a prognostic biomarker for cognitive decline and dementia risk in
patients with CMP. Third, the genetic underpinnings of brain agingin
CMP are not understood, although genome-wide association studies
(GWASs) have identified risk variants linked to CMP and brain-aging
acceleration, respectively*>*. The recent construction of abrain-wide
gene expression atlas has made it possible to connect macroscale
spatial compositions of brain aging with spatial variations in micro-
scale gene expressions®*, providing an alternate avenue to explore the
molecular genetic basis of brain aging in patients with CMP.

To address these issues, we first trained an elastic net regression
model using a cohort of healthy participants (training set, N=5,202)
from the UK Biobank (UKB), utilizing their chronological age as the
label and structural MRI data as the feature. We refer to this model as
the ‘brain age model’ because its purpose is to predict the age of an
individual’s brain. The generalization of this model was evaluated by
testing it on a separate cohort of healthy participants (hold-out set,
N=1,523) from UKB. We then applied this model to several common
types of CMPindataset1 (N =2,427; from UKB) to assess which type of
CMP accelerates brain aging, then validated the findings on dataset 2

(N=192; fromthe local community). Patientsin dataset 2 were invited
to re-evaluate their cognitive scores, assess their dementia risk, and
receive arescanning after five years. This longitudinal design enabled
us to associate brain-aging acceleration at the baseline session with
the cognitive decline at the follow-up session. Finally, we examined
molecular genetic mechanisms of brain-aging acceleration using GWAS
summary statistics, gene transcriptional profiles of the brain and gene
markers specific to brain cell types.

Results

Brain age model

Using a training set (N = 5,202) from UKB, we trained the brain age
model to fit the relationship between the pattern of whole-brain gray
matter volume (GMV) and chronological age in healthy individuals.
This fitting provides a predefined reference that informs a supposed
position (that s, corresponding chronological age) in the healthy aging
trajectory for a given brain. We then tested the performance of the
brain age modelin anindependent hold-out set (N =1,523) from UKB.
Theresults showed that the brain age predicted by our brain age model
closely matched theindividual’s chronological age (Pearson’s r = 0.928,
P<0.001, confidence interval (CI) = (0.921, 0.935); mean absolute error
(MAE) =2.367) (Fig. 2a), suggesting that brain age effectively reflects
the biological age of the brain. To validate the stability and reliability
ofthebrain age predicted by our model, we examined the scan-rescan
consistency of this metric in individuals who had two MRI scans in
the hold-out set (N =104, the interval of the two scans ranged from
two to six years, mean interval = 2.260 years). A strong correlation
(Pearson’sr=0.987,P<0.001, CI=(0.981, 0.991)) was found between
brain age in the first and second scans (Fig. 2b). The change of brain
age between the two scans was significantly equivalent (P< 0.001,
equivalence testing) to the change in chronological age (mean change
of brain age = 2.322 years, mean interval of two scans = 2.260 years)
(Fig.2b). Overall, our brain age model provided an accurate and reliable
estimation of an individual’s brain age.

Heterogeneous patterns of brain aging in CMP

To investigate which types of CMP deviate from the normal trajec-
tory of brain aging, we applied the established brain age model to
individuals with CMP taken from UKB (dataset 1). Each individual in
dataset 1(N=2,427) was assigned to one of four cohorts according to
the single painful site relevant to them: chronic knee pain (V=982),
chronicback pain (N=591), chronic neck pain (V= 528) and chronic hip
pain (N=326) cohorts. Consistent with a previous brain age study on
multiple disease groups™, for each CMP cohort we randomly selected
sex-and age-matched healthy controls (HCs) of equal number fromthe
hold-out set. For eachindividual, we estimated a predicted age differ-
ence (PAD), which was the deviation between anindividual’sbrain age
and their chronological age. This index provided an individual with a
quantifiable evaluation of the level of brain-aging acceleration'. Next,
between-group PAD differences in each CMP cohort were examined,
relative to their respective HC.

Figure 2c shows the estimated PAD and statistical results in data-
set 1. Compared with HC, the chronic knee pain cohort showed sig-
nificantly higher PAD (Cohen’s d = 0.130, false discovery rate (FDR)
g =0.027), but no significant alterations were observed in the other
CMP cohorts (FDR g > 0.05). To examine whether increased PAD in the
chronic knee pain cohort was dominated by KOA, the most common
diseaseleadingto chronicknee paininolder adults, we further subdi-
vided the chronic knee pain cohort into two subgroups (that is, with
(N=161) and without (N = 821) KOA). Significantly higher PAD (d = 0.437,
P <0.001) was found in the KOA cohort, but not in those without KOA
(P>0.05), compared with sex- and age-matched HCs of equal size.
We also performed several additional analyses to demonstrate that
brain-aging accelerationin KOA was not (1) merely an exemplification
of arthritis, (2) due to reduced physical activity and (3) dominated by
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Fig.1| Overview of research questions, participants and analysis pipeline.
a, The present study aims to answer three research questions (Q1-Q3) using two
independent datasets (datasets 1and 2) consisting of several common types of
CMP.b, Age distributions of the training set, hold-out set and several cohorts
with CMP. ¢, Overview of the five steps to address the three research questions.
We have developed and validated an MRI-based brain age model using training

and hold-out sets (step 1) and apply it to examine distinct brain-aging trajectories
inseveral cohorts with CMP (step 2). We also investigate the relationships
between brain-aging acceleration and cognitive function, dementia risk and pain
characteristics (steps 3 and 4). Genetic analyses are employed to explore the
genetic underpinnings of brain-aging acceleration (step 5). PAD, predicted age
difference.

specific sex or (4) caused by medications, comorbidities and levels of
education (Supplementary Figs.1-4 and Supplementary Methods 1-4).
Inaddition to gray-matter structures, white-matter structures and the
functional activity of gray matter also showed substantial age-related
changes®®. Accordingly, we also constructed two brain age models
based on the structural connectivity (SC) of brain white matter and
the functional connectivity (FC) of brain gray matter and applied them

to evaluate the brain-aging acceleration of CMP. Consistent with the
findings for gray-matter structures, PAD estimated by structural and
functional connectivity was significantly higher (SC: d=0.299, FDR
q=0.013;FC:d=0.221,FDR g =0.038) in the KOA cohort compared to
HCs (Supplementary Figs. 5 and 6 and Supplementary Method 5). Itis
worth noting that although KOA had the largest effect size (Cohen’s d)
inbrain-aging acceleration estimated by FC, we observed that patients
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Fig.2| Training abrain age model and applying it to cohorts with CMP
indataset 1. a, Plots showing significant associations (P < 0.001, two-tailed
Pearson correlation) between predicted brain age and chronological age in the
training set (left, N=>5,202) and hold-out set (right, N=1,523). b, Assessment of
the stability of the brain age model across two scans (N =104). Predicted brain
age showed a significant association between the first and second scans (left,
P<0.001, two-tailed Pearson correlation). Significant equivalence was found
between the longitudinal change of brain age and chronological age within
ameanscaninterval of 2.260 years (right, P < 0.001, one-tailed equivalence
testing). The gray dashed line represents the upper equivalence bounds and
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the whiskers represent 95% Cls. ¢, PAD was significantly increased (two-tailed
two-sample t-test) in cohorts with chronic knee pain and KOA compared to their
respective HCs. d, Spatial brain patterns where the colored brain areas show
significant associations (Bonferroni P < 0.05, two-tailed Pearson correlation)
between GMV and PAD across the KOA and HC groups. e, Spatial brain patterns
where the colored brain areas show significant associations both between GMV
and PAD and difference in GMV (P < 0.05, two-tailed two-sample t-test) between
the KOA and HC groups. *P< 0.05. d, Cohen’s d; BA, brain age; CA, chronological
age; High Eqbound, upper equivalent boundary.

with hip painand other knee pain had higher PAD than controls. Given
the highly fluctuating nature of FC, we believe that findings from struc-
tural MRI (that is, regarding gray matter volume and SC) may provide
amorereliable insightinto brain-aging acceleration in CMP patients.

Todemonstrate thereliability of the findings, we applied the brain
age model to dataset 2, which consisted of 133 patients diagnosed with
KOA and 59 matched HCs. Figure 3a displays the estimated PAD and
statistical results from dataset 2. Consistent with dataset 1, signifi-
cantly higher PAD was also found in the patients with KOA (d = 0.454,
P=0.020). We performed sensitivity analyses to confirm that brain-
aging acceleration in KOA was not dependent on the representation
of GMV features or the machine-learning algorithm employed in both
datasets (Supplementary Fig.1and Supplementary Method 6). Taken
together, we identified a replicable (increased PAD was found across
twoindependent datasets) and specific pattern (only observed in KOA
but not in other CMP or arthritis syndromes that we investigated) of
brain-aging acceleration in KOA.

Although brain age is characterized by the pattern of whole-brain
GMV, accelerations in diseased populations may be driven by some
coreregions. Toinvestigate which brainareas contribute to brain-aging
accelerations in KOA, we first examined the associations between the
GMV of brain areas (parcellated by the Brainnetome Atlas) and PAD
across the KOA and HC groups in dataset 1. As shown in Fig. 2d, PAD
was significantly correlated withthe GMV of awiderange of brain areas
(Bonferroni-corrected P< 0.05). Among these brain areas, the hippocam-
pus, thalamus, insula, orbitofrontal lobe (OFC), inferior frontal gyrus
(IFG), middle frontal gyrus (MFG), middle temporal gyrus (MTG), supe-
rior temporal gyrus (STG) and cingulate gyrus exhibited significantly
reduced (P<0.05) GMV in the KOA group compared to the HC group
(Fig.2e). Despitetherelatively small sample size, dataset 2 alsorevealed
significant correlations with PAD (Bonferroni-corrected P< 0.05) and
between-group differences (P < 0.05) in the GMV of the hippocampus
(Supplementary Fig. 7 and Fig. 3b). Detailed information regarding the
statistical results is presented in Supplementary Tables1-4.
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Fig.3|Brain-aging acceleration in KOA and its cognitive relevance in dataset
2.a,PAD was significantly increased (P = 0.020, two-tailed two-sample ¢-test) in
cohorts with KOA compared to HCs. b, Spatial brain patterns in which the colored
brain areas show both significant associations (Bonferroni P < 0.05, two-tailed
Pearson correlation) between GMV and PAD and differencein GMV (P < 0.05,
two-tailed two-sample ¢-test) between the KOA and HC groups. ¢, Scatter plots
showing a significant association between baseline PAD and MQ scores in
patients with KOA (right, FDR g = 0.010, two-tailed Pearson correlation), and no
significant association between baseline PAD and MoCA scores in patients with
KOA (left, FDR g = 0.658, two-tailed Pearson correlation). d, Box plots showing a
significant difference between MQ scores measured in the baseline and follow-
up sessions (right, FDR g < 0.001, two-tailed paired-sample ¢-test, N=43), and

no significant difference between MoCA scores measured in the baseline and

follow-up sessions (left, FDR g = 0.845, two-tailed paired-sample t-test, N=43).

e, Scatter plots showing a significant association between baseline PAD and
reduction rate of MQscores (left, P= 0.028, two-tailed Pearson correlation,
N=43)inafive-year follow-up and AD8 scores (right, P = 0.045, one-tailed
Spearman correlation, N = 41) measured in the follow-up session in patients with
KOA. f, Box plot showing a significant difference (P = 0.001, two-tailed two-
sample ¢-test, Nyox = 43, N,y c =104) in annual increases of PAD between patients
with KOA and HCs during follow-up. AD8, Ascertain Dementia 8; MoCA, Montreal
Cognitive Function Assessment Scale; MQ, memory quotient. *P < 0.05. The
resultsin the scatter plots are displayed as mean estimates (solid lines) with 95%
Cls (shaded areas). The results in box plots are displayed as the mean (bold red
horizontalline), the first and third quartiles (lower and upper hinges) and 1.5x the
interquartile range (whiskers).

PAD relates to cognitive function

We extended our investigation to examine the potential association
between brain-aging acceleration and cognitive functions in patients
with KOA. Given the observed associations between the GMV of the
hippocampus and brain-aging acceleration, as well as the differencesin
the GMV of the hippocampus between the KOA and HC groupsin both
dataset 1and dataset 2, we conducted a more specific examination of
therelationship between brain-aging acceleration and memory func-
tion. To this end, we tested the associations between PAD and global
cognitive and memory function measured by the Montreal Cognitive
Function Assessment Scale (MoCA) and the Wechsler Memory Scale -
Chinese Revision (WMS-CR), respectively, in dataset 2. As shown in
Fig.3c, PAD wassignificantly correlated with the memory quotient (MQ;
WMS-CRtotalscores adjusted by age effects) (Pearson’sr =—0.274, FDR
g =0.010) but not MoCA scores (FDR g > 0.05) in patients with KOA. To
test whether brain-aging acceleration was driven by pain characteristics
experienced by patients with KOA, we measured the knee injury and

osteoarthritis outcome scores (KOOS) of those patients. However, there
was no significant correlation between any dimension of KOOS and PAD
(FDR g > 0.05; Supplementary Fig. 8 and Supplementary Method 7).
We also evaluated the impact of pain characteristics on the memory
function of patients with KOA, yet found no significant correlation
between any dimension of KOOS and MQ scores (FDR g > 0.05; Sup-
plementary Fig.9).

PAD predicts longitudinal memory decline

Although we observed that brain-aging acceleration was associated
withmemory functionin patients with KOA at the baseline session, alon-
gitudinal examination was essential to identify whether these patients
could experience accelerated memory decline and whether this altera-
tion could be predicted by PAD. In the present study, 43 patients in
dataset 2 were invited to revisit and re-evaluate their cognitive and
memory function after five years (follow-up session). Between the
baseline and follow-up sessions, no significant changesin daily activity
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oradverse events were reported by these patients. We found that their
MQ scores were significantly reduced (baseline session,107.00 + 15.52;
follow-up session, 100.81 +15.49; d =-0.571, FDR g < 0.001, paired-
sample t-test) between the two sessions (Fig. 3d). It should be noted
that the reduction in MQ scores was not significantly dependent on
the patient’s chronological age (Pearson’s r = 0.224, P= 0.149). No sig-
nificant difference (baseline session, 25.26 +1.66; follow-up session,
25.16 +2.88;d =-0.032,FDR g > 0.05, paired-sample t-test) was found
in MoCA total scores between the two sessions.

Next, we investigated whether PAD at baseline could serve as a
potential neural marker to predict memory decline in KOA. We found
that the PAD at the baseline session showed a significant positive cor-
relation (Pearson’s r=0.348, P=0.028, FDR g < 0.05; Supplementary
Fig.3e) withthereductionrate (RR = (baseline — post)/baseline) of MQ
inthe five-year follow-up. The correlation was still significant (Pearson’s
r=0.375,P=0.019; Supplementary Fig. 3 and Supplementary Method
8) after adjusting for the effects of pain medications. Because memory
declineis the most common first symptomand a hallmark of patients
with dementia, we hypothesized that higher PAD would be related
to the elevated risk of dementia. The Ascertain Dementia 8 (ADS8)
questionnaire, which includes eight questions to be answered ‘yes’ or
‘no’, has been proven to be highly sensitive and specific in detecting
early manifestations of dementia. In the follow-up session, 41 patients
completed the AD8 dementia screeninginterview. Consistent with our
hypothesis, we observed asignificant positive correlation (Spearman’s
p=0.278, P=0.045, FDR g < 0.05; Fig. 3e) between PAD at baseline
and AD8 scores assessed in the follow-up session. After adjusting for
the effects of pain medications, the correlation remained significant
(Spearman’s p = 0.278, P= 0.046; Supplementary Fig. 3 and Supple-
mentary Method 8).

We conducted additional analyses to provide further evidence
for the associations between brain-aging acceleration and memory
decline, as well as the risks of dementia in KOA. These analyses were
based on the individuals with KOA acquired from UKB, using more
relaxed inclusion criteria than our primary analyses. The results
revealed a significant positive correlation (Pearson’s r = 0.283,
P=0.038) between PAD at baseline and the reduction rate of memory
function during follow-up. Moreover, PAD at the baseline of those
diagnosed with dementia during follow-up exceeded the 90th per-
centile threshold (3.990 years versus 3.934 years) within the KOA
cohort. The top 10% of individuals with KOA with higher PAD exhib-
ited asignificantly elevated risk of dementia (OR = 25.297, P= 0.004,
Fisher’s exact test) when compared to the remainingindividualsin the
KOA group. Further details regarding the inclusion criteria, numeric
memory test and dementia diagnosis are provided in Supplementary
Method 9.

Longitudinal alterations of PAD

Subsequently, we investigated the longitudinal alterations of brain-
aging acceleration in patients with KOA. For this analysis we included
patients (N=43) and HCs (N =104) who had undergone a follow-up
MRI. The results, illustrated in Fig. 3f, revealed a significantly higher
annualincrease of PAD ((PAD;, — PADg,iinc)/the interval between the
two scans) in the KOA group compared to the HC group (d = 0.489,
P=0.001, two-sample t-test) between two sessions. These findings
suggest a worsening trend in brain-aging acceleration over time for
the KOA group.

Pleiotropic gene between PAD and CMP

Structural changes of the human brain are regulated by gene expres-
sion throughout life*. Accordingly, we explored the molecular
genetic mechanism underlying brain-aging acceleration in KOA.
We first examined the genetic overlap between PAD and KOA. After
gathering GWAS summary statistics for PAD (N =20,170) and KOA
(case = 24,955, control = 378,169)°***, we utilized a conjunctional

FDR (cFDR) method to identify single-nucleotide polymorphisms
(SNPs) that were associated with both PAD and KOA. We found five
SNPs (Fig.4a; FDR g < 0.05) located in two pleiotropic genes, SLC39A8
(rs13107325) and NFATS5 (rs12447326, rs11643240, rs11075730 and
rs6499237). We also performed cFDR analyses between PAD and
the other three types of CMP (chronic back pain (case = 80,588,
control =36,816), chronic hip pain (case = 40,152, control =11,364)
and chronic neck pain (case = 72,887, control = 32,509)). The results
showed that there was no pleiotropic gene between PAD and the
other CMP conditions (FDR g > 0.05).

Gene SLC39A8 transcriptionally links with PAD

We further examined whether the pleiotropic genes between KOA and
brain-aging acceleration affect the regional contribution to brain-aging
acceleration in KOA using the post-mortem data of six healthy adult
donors from the Allen Human Brain Atlas (AHBA). The regional con-
tributions to brain-aging accelerationin KOA were defined as the KOA
neuroimaging phenotypes (see Methods for details). The spatial cor-
relations between KOA neuroimaging phenotypes and gene expression
profiles (Fig. 4b) from AHBA were calculated. After correcting for spatial
autocorrelation (SA), we found that the expression of gene SLC39A8 was
negatively correlated with the KOA neuroimaging phenotypesinboth
datasets1(Spearman’sp =-0.329, FDR g¢, = 0.010) and 2 (Spearman’s
p=-0.365, FDR g, = 0.010) (Fig. 4c). No significant correlation was
found between the expression of gene NFATS and the KOA neuroimaging
phenotypes (dataset1: Spearman’s p = —0.292,FDR g5, > 0.05; dataset 2:
Spearman’s p =-0.003, FDR g, > 0.05). The specificity of gene SLC394A8
was defined asits percentile on the ranked gene list, which was obtained
by rankingthe spatial correlation coefficients (that is, Spearman’s p) on
thewhole gene sets (15,980 genes) averaged across two datasets. On the
ranked gene list, the spatial correlation coefficient of gene SLC39A8 was
locatedin the top 1% (Fig. 4d). Next, we replicated the analyses within
the cortical and subcortical regions separately. Across the subcorti-
calregions (N =18), the expression of gene SLC394A8 was negatively
correlated with the KOA neuroimaging phenotypes in both datasets
1(Spearman’s p =-0.674, p;, = 0.001) and 2 (Spearman’s p = —0.649,
Psa=0.003) (Fig. 4¢). No significant correlation was found across the
corticalregions (N =105) in either dataset (ps, > 0.05; Fig. 4c), although
the same trend of negative correlation was observed. Considering that
the hippocampus contributes to brain-aging acceleration of KOA in
both datasets, we also examined the effects of gene SLC39A8 on the
hippocampal neuroimaging phenotypes of KOA. Across tissue samples
within the hippocampus, we also observed a significant correlation
between the expression of gene SLC3948 and the KOA neuroimaging
phenotypesinbothdatasets1(Spearman’s p =-0.319, ps, = 0.048) and
2 (Spearman’s p =-0.569, ps, = 0.002) (Fig. 4€).

PAD-related GO and cell-type enrichment

The Human Protein Atlas (https://www.proteinatlas.org) provides
information on gene expression levels in the different cell types of
brain tissue. In this atlas, gene SLC39A8 has the highest expression
level in two glial cell types, microglial cells (Mic) and astrocytes (Ast)
(Supplementary Fig. 10). Glial cells have been recognized as modula-
tors of the neuronal environment and leaders in the progression of
neurodegenerative diseases”. This drove us to identify whether glial
cells preferentially express the genes with strong correlations with KOA
neuroimaging phenotypes. Based on the cell-specific gene markers of
eight classes of brain cell (Ast, endothelial cells (End), excitatory neu-
rons (Ex), interneurons (In), Mic, oligodendrocytes (Oli), pericytes (Per)
and oligodendrocyte precursor cells (OPC)) collected from a previous
study®®, we performed cell-enrichment analyses on the ranked gene list
(Fig. 5a) using a fast-preranked gene set enrichment analysis (FGSEA)
method. All eight cell classes showed significant enrichment (FDR
g <0.05; Fig. 5b) onthe top or bottom of the ranked gene list (Supple-
mentary Appendix1). Among the eight cell classes, Ast had the highest
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phenotypes and expression profiles of 15,980 genes
Fig. 4|Pleiotropic genes between KOA and brain-aging acceleration.
a, Manhattan plot displaying five significant SNPs located in two pleiotropic
genes in the cFDR analysis. The x axis shows chromosomal position and
they axis the significance (-log,,FDR g; two-tailed). The red line marks the
predefined cFDR significance level (FDR g = 0.05). b, Spatial maps of gene
SLC39A8 expression (top), KOA neuroimaging phenotypesin dataset 1 (middle)
and KOA neuroimaging phenotypesin dataset 2 (bottom). ¢, Scatter plots
showing the spatial association (two-tailed Spearman correlation) between
gene SLC39A8 expression and KOA neuroimaging phenotypes across the whole
brain (left), cortical regions (middle) and subcortical regions (right) in dataset

Gene expression Gene expression

1(top) and dataset 2 (bottom). d, Distribution of spatial associations (two-

tailed Spearman correlation) between KOA neuroimaging phenotypes and

gene expression profiles across the brain. The dashed line indicates the top 1%
negative-correlation genes among all 15,980 genes. The spatial association of
gene SLC39A8is located in the top 1% among all 15,980 genes. e, Scatter plots
showing the spatial association (two-tailed Spearman correlation) between

the expression of gene SLC3948 and KOA neuroimaging phenotypes within the
hippocampus (the contribution of 39 tissue samples located in the hippocampus
to PAD) in dataset 1 (left) and dataset 2 (right). The results in the scatter plots are
displayed as mean estimates (solid lines) with 95% Cls (shaded areas).
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ratio of core genes and normalized enrichment score (NES), and Mic
had the second highest ratio of core genes and NES. These findings
can be replicated (Supplementary Fig. 11) based on the gene markers
(Supplementary Appendix 2) derived from another study®.

We identified two sets of Gene Ontology (GO) enrichment terms
(Fig. 5¢) that were significantly (FDR g < 0.01) enriched at the top
decile of the ranked gene list. The identified biological process terms
were mainly related to neurodevelopment, including the develop-
ment of neuron (GO:0048666, FDR g < 0.001), neuron projection
(GO:0031175,FDR g < 0.001) and central nervous system (GO:0007417,
FDR ¢ < 0.001). The cellular component terms were mainly involved in
the synapse (GO:0045202,FDR g < 0.001), postsynapse (GO:0098794,
FDR ¢ <0.001), presynapse (GO:0098793, FDR ¢ < 0.001), axon
(GO:0030424, FDR g <0.001) and dendrite (GO:0030425, FDR
@ < 0.001). No significant molecular function term was found (FDR
g >0.01). We did not find a significant GO enrichment term at the bot-
tomdecile of theranked genelist (FDR g > 0.01). A fulllist of GO enrich-
ment terms is provided in Supplementary Appendix 3.

Discussion

In this study we have developed a brain age model to estimate brain-
agingacceleration based on the morphological structures of the brain.
Amongseveral cohorts with different types of CMP, brain-aging accel-
eration characterized by increased PAD was only found in individuals
with KOA. Importantly, this brain-aging acceleration in KOA was also
validated in anindependent dataset and showed continuous aggrava-
tion over time. The hippocampus, thalamus, insula, OFC, IFG, MFG,
MTG, STG and cingulate gyrus were identified as key brain regions
contributing to this acceleration. Furthermore, brain-aging accelera-
tion at baseline not only showed a correlation with baseline memory
function, but it also predicted future memory decline and potential
dementiarisk. The SLC39A8 and NFATS genes exhibited pleiotropy
between KOA and brain-aging acceleration, and the spatial expres-
sion patterns of gene SLC39A8 influenced the regional contributions
to brain-aging acceleration in KOA. Additionally, genes preferentially
expressed in Mic and Ast and those involved in synaptic structure and
neurodevelopment showed the strong transcriptional associations
with the regional contributions to brain-aging accelerations in KOA.

The MRI-based brain age model holds great promise for detecting
disease risk*°, and the performance of this model benefits from large
training samples®. In this study we trained a model based on more
than 5,000 healthy samples from a publicly available datasource that
allows a more accurate estimation of brain age*’. Aging-associated
alterations in the brain usually exhibit sex-specific characteristics®.
Accordingly, we matched the age distribution between males and
femalesin the training set to capture a sex-neutral brain-aging trajec-
tory. After training, we tested the trained model on a hold-out set and
showed that the predicted brain age closely matched an individual’s
chronological age. In addition, using data from UKB repeat visits, we
showed highly consistent brain-age estimates within participants
across two MRI scans, suggesting high scan-rescan stability of our
brainmodel. Overall, our trained model provides arobust and reliable
estimation of anindividual’s brain age.

Applying the brain age model to several common types of CMP, we
found brain-aging acceleration only in the chronic knee pain cohorts,
suggesting heterogeneous patterns of brain aging in CMP. Subgroup
analysis in the KOA cohort across two datasets revealed a replicable
brain-aging acceleration characterized by increased PAD. Among the
brain areas playing a key role in brain-aging acceleration in KOA, the
contribution of the hippocampus was identified across two datasets.
The hippocampus is critically involved in several cognitive domains,
particularly memory encoding and consolidation®.Itis also related to
cognitiveimpairmentsinneurodegenerative diseases andis especially
vulnerable in the early stages of Alzheimer’s disease**. A contribution of
the thalamus to brain-aging accelerationin KOA was foundin dataset 1.

The thalamus is densely connected with the hippocampus and plays
a central role in memory retrieval by modulating hippocampal-tha-
lamic-cortical networks®. Volume losses of the hippocampus and
thalamus canbe found in patients with Alzheimer’s disease, eveninthe
mild stage, and are correlated with cognitive impairment*. In line with
these findings, the brain regions associated with cognitive processing
and memory function underlie brain-aging acceleration in KOA.

Our longitudinal investigation revealed that the memory function
(measured by age-adjusted MQ) of patients with KOA was reduced after
five years, but noreduction was observed in global cognitive function
(measured by MoCA). This resultimplies that memory function might
be one of the most vulnerable or earliest impaired cognitive domains
in patients with KOA. Progressive memory decline is a hallmark of
dementia, but it is hard for patients to be aware of this subjectively®’.
Morphological alterationsin the brain usually precede apparent cogni-
tiveimpairments, making them potentially sensitive to the accumula-
tion of biological impairments for dementia*®*’. PAD is sensitive to
integrating and quantifying subtle but spatially widespread structural
abnormalities associated with cognitive deficits”. Here we linked the
pattern of morphological abnormalities at baseline and longitudinal
memory decline, demonstrating that higher brain-aging acceleration
atbaseline can predict more considerable memory decline in patients
with KOA. Moreover, a higher PAD in such patients was associated with
ahigher risk of dementia estimated by AD8, a sensitive screening tool
with reliable discriminative power for early-stage dementia®. In line
with this discovery, our supplementary analyses under relaxed inclu-
sion criteria revealed that individuals in the KOA cohort with PAD in
the top 10% exhibited a higher risk of dementia than the remaining
individuals. Overall, these findings highlight the potential of brain-
agingacceleration asaprognostic biomarker for cognitive decline and
dementiain patients with KOA. Furthermore, between the MRI scans at
the baseline and follow-up sessions, PAD was not constant, butinstead
further increased in patients with KOA, emphasizing the necessity to
uncover the mechanism underlying brain-aging acceleration to prevent
further cognitive impairments.

Inthe present study, increased PAD in patients with KOA was not
explained by pain characteristics or physical activity. We thus sought to
examine whether thereis any gene underlying brain-aging acceleration
in KOA. Consistent with neuroimaging findings, we found shared risk
genes between PAD and KOA, but not the other types of CMP, providing
genetic evidence for the heterogeneous patterns of brainagingin CMP.
Thesharedrisk gene SLC39A8encodes atransmembrane protein that
playscritical functions in the onset of inflammation and is responsible
for transporting several divalent cations related to synaptic plasticity
and cogpnitive deficits®. Using imaging transcriptomics analysis, we
consistently identified spatial transcriptional associations between
gene SLC39A8 and subcortical KOA neuroimaging phenotypes across
two datasets. Thisresult is consistent with previous research showing
that the missense mutation of rs13107325 in gene SLC39A8is associated
with structural variationsin the subcortex®. In the brain, gene SLC3948
ismainly expressed in Mic and Ast. Ex vivo studies have indicated that
theregional heterogeneity of genetic transcription, particularly within
Micand Ast, predetermines different regional susceptibilities to aging
and neurodegenerative diseases****, causing distinct changing trajecto-
riesin different cognitive domains®. Within the hippocampus, we also
observed spatial transcriptional associations between gene SLC394A8
and the KOA neuroimaging phenotypes. This finding is supported by
earlier evidence that glial cells and the release of zinc might modulate
hippocampal synaptic plasticity>*”".

Based on enrichment analyses, we found that the gene mark-
ers of Mic and Ast and those associated with synaptic structure and
neurodevelopment show strong spatial transcriptional associations
with KOA neuroimaging phenotypes. Some studies have suggested
that inflammation might modify brain structure in degenerative dis-
eases viaimmune cells of the central nervous system (Mic and Ast)***.
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Fig. 5| Enrichment analysis on genes with high correlations with KOA
neuroimaging phenotypes. a, The ranked gene list was obtained by averaging
the spatial correlation coefficients of KOA neuroimaging phenotypes on the
whole gene sets (15,980 genes) across two datasets then ranking. b, Cell-
enrichment analysis was performed on the ranked gene list. A total of eight sets
of cell-specific gene markers were enriched on the top or bottom of the ranked
gene list (top). The FGSEA enrichment plot shows that gene markers of Mic and

Astwere enriched at the top of the ranked gene list (bottom). ¢, GO enrichment
terms. The top gene deciles present the greatest number of enrichment terms
inboth BP and CC ontological categories (left). For the results of enrichment
analysis on the top gene deciles, only the most significant ten enrichment terms
aredisplayed in the figure (right). A one-tailed hypergeometric test was used for
determining statistical significance (FDR-B&Y correction). INES|, absolute value
ofthe NES. BP, biological process; CC, cellular component.

Progression of KOA involves complex alterations in the inflamma-
tory environment. The increased circulating concentrations of pro-
inflammatory cytokines might alter brain structures via microglia
and astrocytic function by means of abnormal synaptic pruning and
the subsequent effect on GMV®*®!, especially in the hippocampus®*.

Inaddition, theinteraction of the proinflammatory cytokine and glial
cellsmightincrease susceptibility to neurodegenerative diseases and
cognitiveimpairments by producing dysregulation of synaptic plastic-
ity and transmission®***, Increased neuroinflammationin the thalamus
of patients with KOA has been revealed by some neurometabolites
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regarded as glial markers®. A positron emission tomography study
using anin vivo marker of Mic and Ast has revealed a positive correla-
tion between neuroinflammationinthe brain and cognitiveimpairment
score®®. Taken together, biological processes involving glial cells and
inflammation might connect KOA to brain-aging acceleration. We
also found indications that inflammation may play a role in the het-
erogeneous pattern of brain aging in common types of chronic pain
(Supplementary Fig. 12 and Supplementary Method 10). Our results
show that, among the CMP groups examined, those suffering from
chronic knee pain had the highest levels of C-reactive protein (CRP),
anindicator of systemic inflammation, and the KOA group had higher
CRP levels than the group with chronic knee pain. Moreover, the het-
erogeneous patterns of brain-aging acceleration were significantly
correlated with variationinthe magnitude of CRP levelincreases across
different CMP groups.

Several limitations should be considered when interpreting our
findings. First, the types of CMP were defined based on painful sites
inthe body because of the limitations of the dataset employed in the
present study. This approach may not be optimal, asit does not always
reflect the different underlying pathological mechanisms. Future
investigations on PAD of CMP could integrate the types of CMP based on
pathological similarity. Second, the CMP in UKB is mainly self-reported
by individuals. Although some primary findings in UKB have been
replicated in patients with KOA with a clinical diagnosis, the results of
other types of CMP deserve further validation in diagnosed patients.
Third, the sample size for the longitudinal analysis was relatively small,
and the assessment of dementia risk was reliant on a questionnaire.
Although the AD8 questionnaire has demonstrated notable sensitiv-
ity and specificity in identifying early signs of dementia, and our sup-
plementary analyses under relaxed inclusion criteria supported the
primary finding, further prospective studies incorporating a clinical
dementiadiagnosis and larger sample sizes are crucial for corroborat-
ing our findings. Finally, our findings point to the promise of brain-
agingacceleration as a prognostic biomarker for dementiain KOA, but
brain-aging acceleration alone cannot fully explain the accumulated
biological impairments in the course of aging. To obtain a clinically
implementablerisk score for dementia, future works should combine
brainage with other aging-related biological information, suchas DNA
methylation and telomere length.

In conclusion, we have trained abrainage model based on alarge
sample and identified specific brain-aging accelerationinindividuals
with KOA, contrasting with several common types of CMP across two
independent datasets. This acceleration was primarily driven by the
brainstructures for cognitive processing and is related to longitudinal
memory decline and dementia risk. Furthermore, we have demon-
strated that SLC394A8—a gene highly expressed in glial cells—might be
akey genetic factor underpinning this acceleration. Gene markers of
Micand Ast and those involved in synaptic structure and neurodevelop-
mentwere particularly strong transcriptional associates of the regional
contributionsto thisacceleration. Together, we have demonstrated the
heterogeneity of brainaging in CMP and identified adistinct heritable
brain-aging acceleration pattern linking KOA to dementia by providing
anintegrative biological profile that connects specific genes, molecular
processes and cell classes with morphological alterations.

Methods

Study design

The present study explored the patterns of brain aging in four com-
mon types of CMP (chronic knee pain, chronic back pain, chronic neck
pain and chronic hip pain) and the cognitive relevance and molecular
genetic basis of brain-aging acceleration by performing five steps of
analyses (Fig. 1c) across several healthy and CMP cohorts (Fig. 1b). In
step 1, we trained and validated a brain age model using a training set
(N=5,202) and ahold-out set (N=1,523) consisting of healthy individu-
als from UKB. Instep 2, wefirst applied the brain age model to six CMP

cohorts (the aforementioned four types of CMP and two subgroups
of the chronic knee pain cohort) from UKB (dataset 1; N=2,427) to
estimate their distinct patterns of brain aging. Following identifi-
cation of the CMP cohort that showed brain-aging acceleration, we
validated the findings based on the same type of CMP cohort (that is,
the KOA cohortin this study) and HCs from alocally collected dataset
(dataset 2, N=192).In steps 3 and 4, we further extended the findings
based on cognitive and clinical measures acquired from dataset 2.
Specifically, step 3 investigated the associations of brain-aging accel-
eration with global cognitive function, memory function and pain
characteristics in patients with KOA from dataset 2. Step 4 included the
KOA patients from dataset 2 who completed afive-year follow-up. The
associations of their brain-aging acceleration at baseline with cogni-
tive and memory decline, as well as dementia risk during follow-up,
wereinvestigated. Instep 5, the molecular genetic basis of brain-aging
acceleration was examined based on KOA neuroimaging phenotypes
and publicly available genetic data.

Participants

Thedatausedinthe presentstudy wereacquired from twoindependent
datasources: UKB and the Affiliated Rehabilitation Hospital of Fujian
University of Traditional Chinese Medicine. This study was approved by
the Human Research Ethics Committee at the Institute of Psychology of
Chinese Academy of Sciences (ethical approval no. H21030). The study
followed the STROBE (strengthening the reporting of observational
studies in epidemiology) statement®.

The present study included a subset of participants from UKB
(application ID 71901) consisting of 6,725 healthy individuals and
2,427 individuals with CMP. UKB has been approved to obtain and dis-
seminate data and samples by the North West Multi-Centre Research
Ethics Committee (http://www.ukbiobank.ac.uk/ethics), and these
ethical regulations cover the workin the present study. All participants
voluntarily participated in the experiments carried out by UKB and
provided written informed consent. To develop a brain age model,
6,725 healthy individuals were subdivided into a training set and a
hold-out set. A proper splitting strategy for datais necessary to obtain
acredible estimation for model performance®®. According to arecent
technical study onbrainage*?, 5,000 samples are sufficient to provide
good performance, with a further increase in the number of samples
producing few improvements. Moreover, different age distributions
between males and females may also cause potential bias for a brain
age model because of differential brain developmental trajectories by
sex®. Inthe present study, we randomly split 6,725 healthy individuals
intoatraining setand ahold-outset10,000 times, and determined an
optimal split with the following criteria: (1) the number of samples in
thetraining set was more than 5,000, (2) the age distribution between
males and females was matched in both the training and hold-out sets
and (3) the number of samplesin the hold-out set was not less than any
CMP cohort. The similarities between age distributions were estimated
using Jensen-Shannon divergence, which is a common method for
symmetrically measuring the similarity between two probability dis-
tributions’. In this procedure, 5,202 healthy (male = 2,394) individuals
were assigned to the training set, and the remaining 1,523 healthy indi-
viduals (male = 701) were assigned to the hold-out set. Subsequently,
2,427 individuals who reported CMP only at one body site over three
months via a touchscreen questionnaire (category ID 100048) were
subdividedinto four cohorts of dataset 1accordingto their painful site:
chronic knee pain (N =982), chronic back pain (N =591), chronic neck
pain (N=528) and chronic hip pain (N=326). The chronic knee pain
cohorts were further subdivided into the KOA cohort (NV=161) and the
cohort without KOA (V= 821). Baseline T1-weighted MRl images were
collected from allincluded participants. A total of 104 participantsin
the hold-outset completed asecond MRIscan two to six years after the
baseline scan. See Supplementary Fig. 13 and Supplementary Table 5
for detailed inclusion criteriaand demographic information.
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The data acquired from the Affiliated Rehabilitation Hospital
of Fujian University of Traditional Chinese Medicine included 133
patients diagnosed with KOA and 59 sex- and age-matched HCs. The
KOA patients were diagnosed in the left or right knee based on the
diagnostic criteria of the American Rheumatism Association by an
orthopedic physician. These patients achieved a grade 2-3 KOA on
the Kellgren-Lawrence scale on a standing anterior-posterior X-ray.
These 192 individuals were assigned to dataset 2. The present study
obtained approval fromthe Medical Ethics Committee of the Affiliated
Rehabilitation Hospital of Fujian University of Traditional Chinese
Medicine and the second affiliated hospital of Fujian University of
Traditional Chinese Medicine. Written informed consent was obtained
from all participants, and registration was completed on the Clinical
Trial Registry (http://www.chictr.org.cn/register.aspx; clinical trial
registration no. ChiCTR-IOR-16009308). Baseline T1-weighted MRI
images were collected from all included participants. Forty-three
participants completed a repeat MRI scan and cognitive assessments
inthefive-year follow-up. Participants were compensated monetarily
for each complete MRI session. See Supplementary Fig. 14 and Sup-
plementary Table 6 for further descriptions of the inclusion criteria
and demographic information.

Acquisition and preprocessing ofimaging data

T1-weighted MRI images acquired from UKB are publicly available.
Details about the image acquisition are available at the UKB website
(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367) and in an
open-source document (https://biobank.ndph.ox.ac.uk/showcase/
showcase/docs/brain_mri.pdf). Tl-weighted MRl images in dataset
2 were acquired on a3.0-T GE 750 scanner and eight-channel receiver
head coil (General Electric) with the following parameters: slice thick-
ness =1mm, flip angle =15°, field of view (FOV) =240 mm and 160 slices
inacquisition.

T1-weighted MRI images were preprocessed using the Compu-
tational Anatomy Toolbox (CAT12, http://www.neuro.uni-jena.de/
cat) with default settings, primarily including segment, normaliza-
tion, modulation and smooth. In brief, denoised and bias-corrected
T1-weighted MRIimages were spatially registered to tissue probability
maps provided by statistical parametric mapping (SPM) (http://www.
fil.ion.ucl.ac.uk/spm) and segmented into gray matter, white matter
and cerebrospinal fluid. After being spatially normalized into stand-
ard stereotactic Montreal Neurological Institute space, the modu-
lated GMV, compensated for the effect of spatial normalization, was
smoothed with a 4-mm full-width at half-maximum Gaussian kernel
andresampled to 3-mm spatial resolution. The estimated intracranial
volume (TIV) was calculated as the summation of the gray matter, white
matter and cerebrospinal fluid volumes in native space.

Training and generalization of the brain age model

In the present study, the brain age model was constructed based on
elastic net regression, atechnique commonly used for brain age estima-
tion”’. In this model, the hyperparameter a was pre-set to 0.5to balance
the weight of L1-norm versus L2-normregularizations. Regularization
coefficient A was tuned using a fivefold cross-validation on the training
set, with 50 repetitions to realize different partitions on the dataset.
The optimal A determined by the cross-validation procedure was used
to develop afinal predictive model on the entire training set. Before
training, GMV features were first standardized and transformed into
features embedded in low-dimensional subspaces to speed up the
training process and avoid overfitting. Specifically, each GMV feature
was standardized (minus the mean g and scaled to the unit variance o)
independently across training samples. Principal component analysis
(PCA) was subsequently run on the standardized GMYV features, and
the top 500 components (explaining 68% of the total variance) were
used as the feature inputs of the predictive model. Standardization
and PCA were only performed on the training set, and the resulting

transformation parameters were stored and later applied to unseen
test data. The performance of the brain age model was assessed on the
hold-out set, which wasindependent of the model’s training. We used
the Pearson’s correlation coefficient and MAE between predicted age
and chronological age to measure the accuracy of the age estimation.
The PCA and elastic net regression were run on MATLAB.

Calculation of PAD

After assessing the model performance, the established age predic-
tive model was applied to preprocessed MRI data in datasets 1 and
2 to predict an individual’s brain age. Next, an individual’s PAD was
computed by subtracting their chronological age from their brain
age. To adjust for the confounding effect caused by sex and age, as
frequently reported in previous studies on brain age, we constructed
aregression model according to

Brain age = B, + B; x chronological age + B, x sex + € @

asadvised by aprevious technical study”, where B, is the intercept, B,
and B, are the effects of chronological age and sex on brain age, respec-
tively, and the residuals e represent the corrected PAD controlling for
sex and chronological age. The regression model was constructed only
inthe training set, and the resulting regression coefficients were used
for bias removalin the test data as follows:

Corrected PAD = brain age — (B, + B; x chronological age + B, x sex)
(2)

The corrected brain age was calculated by adding the chronologi-
calage and corrected PAD, as follows:

Corrected brain age = chronological age + corrected PAD 3)

In the present study, the corrected PAD and brain age were used
to perform the following statistical analyses.

Cognitive evaluation

In dataset 2, cognitive evaluations were conducted using MoCA’*and
WMS-CR”’. MoCA evaluates comprehensive cognitive ability, which is
composed of seven different cognitive domains (visuospatial/executive
functions, 5-min delayed verbal memory, verbal memory registration
and learning, attention, naming, abstraction and orientation). WMS-CR
measures seven different types of memory function (mental control,
picturerecognition, visual reproduction, associative learning, touch,
comprehension memory and digit span). By adjusting for age effects
from WMS-CR total scores, MQ was further calculated to measure the
memory function corrected for age-related decline. We used MoCA
total scores and MQ to assess the global cognitive function and memory
function of patients with KOA, respectively. A higher total score of
MoCA or MQ means better function. The AD8 questionnaire, a brief
informant-based measure with eight questions, was used to evaluate
dementiariskin the patients™.

Genetic pleiotropy analysis

The cFDR method, inspired by the empirical Bayes statistical frame-
work, is specifically designed to be applied to polygenic traits and dis-
orders characterized by numerous subtle genetic effects. It combines
GWAS summary statistics of two traits to identify pleiotropicloci that
inform shared genetic risks, enabling the discovery of connections
between brain structure and diseases”, as well as between different
diseases’”’, and is tailored for scenarios characterized by dense ele-
ments”®”’. Inthe present study we employed cFDR analysis to identify
pleiotropic genes that were significantly associated with both KOA and
brain-aging acceleration. We collected the GWAS summary statistics for
KOA and brain-aging acceleration from previous studies®** to perform
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the cFDR analysis. We also investigated whether there are pleiotropic
genes between brain-aging acceleration and the other types of CMP
(chronicback pain, chronic hip painand chronic neck pain)®’. The cFDR
analysis was run using the MATLAB-based pleiofdr toolbox (https://
github.com/precimed/pleiofdr).

Preprocessing of gene expression data

Human gene expression data in the brain were acquired from AHBA,
a publicly available transcriptional atlas provided by the Allen Insti-
tute®*. A total of 3,702 spatially distributed tissue samples in AHBA
were collected from the brains of six healthy adult donors without a
history of psychiatric or neuropathological disorders. More details are
available onthe website of the Allen Institute (http://www.brain-map.
org). Given that the human reference genome is constantly updated,
reannotating probes to their corresponding genes is essential to obtain
moreaccurate inferences. We completed probe-to-gene reannotation
based on Allen probe sequences, provided using the Re-annotator
toolkit (https://sourceforge.net/projects/reannotator). Following
reannotation, we used the abagen toolbox (https://www.github.com/
netneurolab/abagen)® to preprocess microarray data using the
default procedures. Briefly, probes were first filtered to discriminate
expression signals from background noise. Only the probe with the
highest differential stability was retained for each gene, resulting
in 15,981 genes with a single expression value. Then, tissue samples
were assigned to brain regions parcellated by the Brainnetome Atlas
(http://atlas.brainnetome.org). In total, 123 brain regions of the left
hemisphere (105 cortical regions and 18 subcortical regions) were
considered for the following analyses, but there were only two donors
with tissue samples from the right hemisphere®. The between-sample
andinter-donor variabilities were corrected by combining the robust
sigmoid function and min-max function. In this procedure, one gene
was discarded due to poor normalization. Finally, corrected genetic
expression profiles were averaged across the six donors, resultingina
123 x 15,980 expression matrix, with each column denoting the regional
expression pattern of a gene.

Imaging transcriptomic analysis

The contribution of abrain voxel to brain-aging accelerationis affected
by both the influence of GMV in that voxel on PAD and the impact of
the presence of the disease on the GMV of that voxel. Therefore, we
defined the contribution of abrain voxel to brain-aging acceleration as
the product of theregression coefficients representing the association
between group and GMV, and the association between GMV and PAD.
These two regression coefficients are derived from two models, one
withgroup and GMV asindependent and dependent variables, respec-
tively, and the other with GMV and PAD asindependent and dependent
variables, respectively. Both modelsincorporate chronological age, sex
and TIVas covariates. The contributions of brain voxels to brain-aging
acceleration in the whole brain were averaged into 123 brain regions
inthe left hemisphere parcellated by the Brainnetome Atlas, yielding
region of interest (ROI)-wise neuroimaging phenotypes that present
the contributions of 123 brain areas to brain-aging acceleration. Sub-
sequently, the spatial correlation coefficients (Spearman’s p) between
the expression values of pleiotropic genes in AHBA and ROI-wise neuro-
imaging phenotypes were computed separately in datasets1and2.In
imaging transcriptomic studies, the false positive rate can be inflated
by intrinsic expression or phenotype correlations among neighbor-
ing brain regions (that is, spatial autocorrelations)*>®, We corrected
this spatial autocorrelation effect using the BrainSMASH package
(https://brainsmash.readthedocs.io/en/latest/index.html), which
introduces a spatially constrained null model®. To evaluate the speci-
ficity of agene, spatial correlation coefficients (Spearman’s p) for each
AHBA gene were calculated, averaged across two datasets, and ranked.
The target gene was considered to be specific if it was ranked within
the top 5% of the ranked gene list (15,980 genes).

Enrichment analysis

ToppGene (https://toppgene.cchmc.org) was employed to iden-
tify biological enrichment terms of the genes highly correlated to
neuroimaging phenotypes. Matching previous approaches®**?, the
aforementioned ranked gene list was first split into evenly sized gene
deciles, then gene enrichment analyses were performed on the top
decile. Three GO classes (biological process, cellular component and
molecular function) were considered in the present study (g < 0.01,
one-tailed hypergeometric test, FDR-B&Y correction). To perform
cell-enrichment analysis, we acquired cell-specific transcriptional
gene markers of 16 cell classes (Ast, End, Ex1, Ex3, Ex4, Ex5,Ex8, In1,In3,
In4, In6, somatostatin, Mic, Oli, Per and OPC) from a previous study*®
that identified cell-specific gene markers based on transcriptional
datainthe frontal (BA 6/9/10) and visual cortex (BA17) obtained from
the Gene Expression Omnibus®. In this study?®, differential expres-
sion within each cell class, in relation to all other classes, was calcu-
lated, and genes exhibiting significantly positive differential gene
expression were defined as distinctive cell-specific gene markers of
the respective cell class. Following a previous study that performed
a clustering analysis on multiple cell classes®®, we further assigned
Ex and In subtypes into Ex and In cell classes, respectively, resulting
in eight canonical cell classes (Ast, End, EX, In, Mic, Oli, Per and OPC).
Based on the eight sets of cell-specific gene markers (Supplementary
Appendix 4), FGSEA* was conducted to identify cell classes in which
the gene markers were over-represented on the top or bottom of the
ranked gene list. Single-cell FGSEA was run on the R-based cluster-
Profiler package (https://bioconductor.org/packages/release/bioc/
html/clusterProfiler.html). Two measures, the ratio of core genes and
NES, were used to evaluate the degree of enrichment. The enrichment
score was calculated by walking down the ranked gene list from the
top. Through the ranked gene list, the enrichment score was increased
when we encountered agene belonging to the predefined gene set and
decreased when it was not encountered®, Because the increase in the
magnitude depends onthe spatial correlation coefficients of the gene, a
higher enrichment score would be obtained if gene markers were over-
represented on the top or bottom of the ranked gene list. Enrichment
scores were further transformed to NES by adjusting for variations
in the gene set size of several cell classes. The ratio of core genes was
calculated using a leading-edge analysis and represented how many
genes directly contributed to the enrichment score®®. Because cell-
specific gene markers are sensitive to the acquisition methodology,
analysis process or thresholding, we replicated FGSEA on the cell-
specific gene markers (Supplementary Appendix 5) acquired from
another study”.

Statistical analysis
The performance of the brain age model was estimated using Pearson’s
correlation coefficient and MAE between the predicted age and chrono-
logical age. A higher Pearson’s correlation coefficient and lower MAE
indicate better predictive power of the brain age model.
Theequivalence between the longitudinal change of the predicted
age and chronological age in the hold-out set was examined using
equivalence testing (one-tailed, P < 0.05), with 0.452 years as the upper
equivalence bound (assuming that the error per year was no more
than 0.2 years). Two-sample ¢-tests (two-tailed, P < 0.05) were used
to perform between-group inference on PAD and annual increases of
PAD during follow-up, with chronological age, sexand TIVincluded as
covariates. The differences in cognitive measures between the baseline
and follow-up sessions were estimated using a paired-sample ¢-test
(two-tailed, P < 0.05). The relationships between PAD and cognitive
measures and clinical scores were estimated using Pearson correla-
tion analyses (two-tailed, P < 0.05) with chronological age, sex and
TIVincluded as covariates. Considering that the AD8 scoreisaranked
variable and has strong non-normality (a positive-skewed distribution),
we used Spearman correlation analyses (one-tailed, P< 0.05) totest the
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relationship between PAD and AD8 scores with chronological age, sex
and TIV included as covariates. Consistent with previous studies®*®,
Spearman correlation analyses (two-tailed, P < 0.05) were conducted
to calculate the spatial correlation between the neuroimaging pheno-
types and gene expression. The statistical results were corrected for
multiple comparisons with FDR.

The associations between the GMV of brain areas and PAD were
estimated using Pearson correlationanalyses (two-tailed, P < 0.05) with
chronological age, sex, TIVand disease groups included as covariates,
followed by the Bonferroni multiple testing correction. Between-
group inferences on GMV were performed using two-sample t-tests
(two-tailed, P < 0.05), with chronological age, sex and TIV included
ascovariates.

The statistical significance of cell-enrichment analyses was
obtained by permuting the gene symbols of the ranked gene list. The
Pvalue of the observed enrichment was calculated relative to the
null distribution produced from permuted data and then adjusted
to account for multiple testing corrections using the FDR procedure.
To obtain a stable null distribution, we permuted the gene symbols
100,000 times.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this Article.

Data availability

The MRI data are from multiple sources. The data acquired from UKB
are publicly available upon third-party authorization (https:/www.
ukbiobank.ac.uk/register-apply). The GWAS summary statistics of
KOA were downloaded from https://www.ebi.ac.uk/gwas/publica-
tions/30664745. The GWAS summary statistics for chronic hip pain,
chronic back pain and chronic neck pain were downloaded from
https://gwas.mrcieu.ac.uk/datasets with the category codes as ukb-
b-133, ukb-b-8463 and ukb-b-16118, respectively. Human brain gene
expression datain AHBA can be downloaded from http://human.brain-
map.org/static/download. Individual data used to estimate brain age
indataset 2 canbe accessed via ScienceDB (https://doi.org/10.57760/
sciencedb.psych.00120).

Code availability

The publicly available software for the analyses has been described
in the Methods of our manuscript. Our custom analysis code and the
developed brain age model can be accessed at https://github.com/
tulab-brain/BrainAgeCP.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  The MRI data of Local community was collected on a 3.0T GE 750 scanner (General Electric, Milwaukee, WI, USA) with a 8 channel receive
head coil. The MRI data of UK Biobank is directly available from UK Biobank.

Data analysis MRI data was analyzed using SPM (http://www fil.ion.ucl.ac.uk/spm) and CAT12 (http://www.neuro.uni-jena.de/cat);
Elastic net regression and SVR was performed using Matlab (ww2.mathworks.cn/products/statistics.html);

Genetic pleiotropy analysis was performed using pleiofdr toolbox (https://github.com/precimed/pleiofdr);
The data of AHBA was preprocessed using abagen toolbox (version 0.1.3,https://github.com/rmarkello/abagen);
The spatial autocorrelation in gene transcriptional analysis was corrected using BrainSMASH package (version 0.11.0, https://

brainsmash.readthedocs.io/en/latest/index.html);

The cell enrichment analyses were conducted using clusterProfiler package (version 3.10.1,https://bioconductor.org/packages/release/bioc/
html/clusterProfiler.html);

The probe-to-gene reannotation is performed based on Re-annotator toolkit (version 1.0.0,http://sourceforge.net/projects/reannotator);

The Custom code can be acquired from github web (https://github.com/tulab-brain/BrainAgeCP).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

This project corresponds to UK Biobank application ID 71901. Data from UK Biobank are publicly available from https://biobank.ndph.ox.ac.uk/upon third-party
authorization: https://www.ukbiobank.ac.uk/register-apply. The GWAS summary statistics of chronic pain can be downloaded from https://gwas.mrcieu.ac.uk/
datasets with the catagory codes as ukb-b-133, ukb-b-8463, and ukb-b-16118. The GWAS summary statistics of knee osteoarthritis (KOA) can be downloaded from
https://www.ebi.ac.uk/gwas/publications/30664745. Human brain gene expression data in AHBA can be downloaded from http://human.brain-map.org/static/
download. Individual data used to estimate brain age in Dataset 2 can be accessed via ScienceDB (https://doi.org/10.57760/sciencedb.psych.00120).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender All participants' sex were determined based on self-reporting. The self-reporting sex (Field ID 31) In the UK Biobank was
obtained via questionaire.

Reporting on race, ethnicity, or  No socially relevant categorization variables were included in the present study.
other socially relevant
groupings

Population characteristics UK Biobank:
total number: 9152.
age: 62.96+7.70; 45-81.
sex: 4259 male and 4893 female.
group: 6725 healthy subjects; 982 chronic knee pain, 591 chronic back pain, 528 chronic neck pain, and 326 chronic hip pain
subjects.

Local community:

total number: 192.

age: 59.62+6.84; 40-70.

sex: 50 male and 142 female.

group: 133 KOA and 59 healthy subjects.

Recruitment The participants of UK Biobank were recruited through postal invitations. The participants from local community were
recruited via advertisements posted on social media like WeChat. The recruitment have been biased towards older as aging is
the subject of the present study.

Ethics oversight This study was approved by the Human Research Ethics Committee at the Institute of Psychology of Chinese Academy of
Sciences (ethical approval number is H21030)

UKB has been approved to obtain and disseminate data and samples by the North West Multi-Centre Research Ethics
Committee (http://www.ukbiobank.ac.uk/ethics), and these ethical regulations cover the work in the present study.

The study conducted on local community obtained approval from the Medical Ethics Committee of the Affiliated
Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine and the Second affiliated hospital of Fujian
University of Traditional Chines Medicine.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical method was used to predetermine sample sizes. The primary analyses included 9,152 participants directly acquired from a open
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Sample size

Data exclusions

Replication

Randomization

Blinding

Behaviou

dataset, UK Biobank, making it statistically powerful enough to detect small effect. Moreover, we replicated the fingings using an independent
dataset, enhancing the credibility of the conclusions.

Exclusion criteria for the healthy control group in UK Biobank: 1) without T1-MRI data; 2) have self-reported fair or poor health ratings; 3)
have cancer; 4) have non-cancer illnesses; 5) have any self-reported longstanding disability or infirmity; 6) have any self-reported chronic pain
condition.

Exclusion criteria for the chronic pain cohorts in UK Biobank: 1) without T1-MRI data; 2) have been included in the healthy control group; 3)
have cancer; 4) have heart attacks, angina or stroke diagnosed by doctor; 5) have any self-reported longstanding disability or infirmity; 6) have
dementia, Alzheimer’s disease, cognitive impairment, epilepsy, cerebral palsy, neuro injury/trauma, depression, anxiety/panic attacks,
nervous breakdown, schizophrenia, self-harm/suicide attempt, mania/bipolar disorder/manic depression, post-traumatic stress disorder,
alcohol dependency, or other substance abuse/dependency: 7) have self-reported excellent or good health ratings; 8) have more than one
type of chronic pain conditions.

Exclusion criteria for the healthy control group in local community: 1) without T1-MRI data; 2) have any history of stroke, severe
cerebrovascular disease, musculoskeletal system disease, or sports injury related contraindications; 3) a score of <24 on the cognitive
screening by the Mini-Mental State Exam (MMSE); 4) a score of >14 on the Beck Depression Inventory (BDI).

Exclusion criteria for the KOA patients in local community: 1) without T1-MRI data; 2) had history of knee surgery within the past 6 months or
intra-articular injection of corticosteroids within the past 3 months; 3) knee pain attributable to rheumatic or other inflammatory disease; 4)
have primary or secondary muscle disease; 5) have abnormal mental state, not autonomous, or unable to cooperate with study interventions
and staff; 6) MRI contraindications, such as dentures, porcelain teeth, and pacemakers 7) have bleeding disorders; 8) have a score of <24 on
the cognitive screening by the Mini-Mental State Exam;

The findings were biologically replicated one time using an independent dataset, including increased predicted age difference (PAD) in KOA,
the contribution of the hippocampus to PAD, and transcriptional associations between the KOA neuroimaging phenotypes and expression of
gene SLC39A8.

In our statistical analyses, we regressed out covariates including sex, age, and total intracranial volume (TIV). The educational levels,
medications, and comorbidities were adjusted in the sensitivity analyses

Blinding was not applicable to this study as this is observational.

ral & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing

Data exclusions

Non-participation

Randomization

Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,

describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale | /ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which
the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.

Did the study involve field work? [] Yes []no

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies & |:| ChlP-seq
Eukaryotic cell lines & |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern
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Antibodies

Antibodies used

Validation

Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)

Authentication

State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for

mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  ngme any commonly misidentified cell lines used in the study and provide a rationale for their use.

(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance

Specimen deposition

Dating methods

Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,
export.

Indicate where the specimens have been deposited to permit free access by other researchers.
If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where

they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight

Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

Wild animals

Reporting on sex

Field-collected samples

Ethics oversight

For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Provide details on animals observed in or captured in the field, report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration
Study protocol
Data collection

Outcomes

Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.
Note where the full trial protocol can be accessed OR if not available, explain why.
Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes
[] Public health

|:| National security

|:| Ecosystems

Oooonos

|:| Crops and/or livestock

|:| Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:
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Plants

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

Seed stocks

Novel plant genotypes

Authentication

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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ChlP-seq

Data deposition

|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC)

enable peer review. Write "no longer applicable" for "Final submission" documents.
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Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and

lot number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Structural MRI (T1), Diffution MRI, and resting-state functional MRI.




Design specifications

UK Biobank designed imaging acquisition protocals including 6 modalities. The collection order is T1-weighted structural
imaging, resting-state functional MRI, task functional MRI, T2-weighted FLAIR structural imaging, Diffution MRI, and
susceptibility-weighted imaging.

Local community designed imaging acquisition protocals including 2 modalities. The collection order is T1-weighted
structural imaging and resting-state functional MRI.

Behavioral performance measures For the KOA patients in local community, cognitive function and memory function were measured by the Montreal

Acquisition
Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI Used

Preprocessing

Preprocessing software

Normalization
Normalization template
Noise and artifact removal

Volume censoring

Cognitive Function Assessment Scale (MoCA) and Wechsler Memory Scale-Chinese Revision (WMS-CR). The AD8
guestionnaire was used to evaluate dementia risk in KOA patients. The knee injury and osteoarthritis outcome scores
(KOOS) was used to evaluate pain characteristics. For the KOA individuals with relaxed inclusion criteria in UKB, memory
function were measured by a numeric memory test (Data-Field 4282).

T1-weighted structural imaging, Diffusion imaging, and Functional imaging.
3T

For UK Biobank, detailed sequence and imaging parameters can be obtained from an open-source document (https://
biobank.ndph.ox.ac.uk/showcase/showcase/docs/brain_mri.pdf).

For local community, T1-weighted structural imaging were acquired on a 3.0T GE 750 scanner and 8-channel receive
head coil (General Electric, Milwaukee, WI, USA) with the following parameters: slice thickness = 1 mm, flip angle = 15°,

field of view (FOV) = 240 mm, and 160 slices in acquisition.

Whole brain for T1-weighted structural imaging; ROl-based imaging phenotypes for Diffusion and Functional imaging
(directly acquired from UK Biobank).

D Not used

T1-weighted structural imaging data was preprocessed using SPM12 and Computational Anatomy Toolbox (CAT12) ;
Diffusion and functional imaging data was directly acquired from UK Biobank.

Non-linear
MNI152NLin2009cAsym_Geodesic Shooting templates
As part of the CAT12 default pipeline

Not applicable

Statistical modeling & inference

Model type and settings

Effect(s) tested

Multivariate analyses were used to estimate brain age; Univariate analyses were used to compare PAD and relate it to
behavior and genetic data.

Pearson’s correlation coefficient and mean absolute error between brain age and chronological age was used to assess the
brain age model; Two-sample t-tests were used to perform between-group inference on PAD, PAD changes during follow-up,
and grey matter volume (GMV). Equivalence testing was used to examine the equivalence between the longitudinal change
of the predicted age and chronological age. Pearson correlation was used to examine the associations between PAD and
GMV, cognitive function and pain characteristics. Spearman correlation was used to examine the associations between PAD
and ADS8 scores. Fisher's Exact Test was used to examine the associations between diagnosis of dementia and PAD.

Specify type of analysis: [ | whole brain || ROI-based Both

Statistic type for inference

(See Eklund et al. 2016)
Correction

Models & analysis

n/a | Involved in the study

Voxel-wise analysis was performed to develop MRI(VBM)-based brain age model; ROI-wise analysis was performed to
develop SC- and FC-based brain age model; ROI-wise analysis was performed to correlate MRI phenotypes with gene
expression.

False discovery rate (FDR) and Bonferroni

|:| g Functional and/or effective connectivity

|:| Graph analysis

D IXI Multivariate modeling or predictive analysis
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Functional and/or effective connectivity Pearson correlation

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.qg. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis A elastic net regression predictive model was used to estimate brain age. The performance of the model was
assessed using Pearson’s correlation coefficient and mean absolute error (MAE).
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