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Pain-preferential thalamocortical neural 
dynamics across species

Yiheng Tu    1,2 , Zhenjiang Li    1,2, Libo Zhang1,2, Huijuan Zhang1,2, Yanzhi Bi    1,2, 
Lupeng Yue    1,2 & Li Hu    1,2 

Searching for pain-preferential neural activity is essential for 
understanding and managing pain. Here, we investigated the preferential 
role of thalamocortical neural dynamics in encoding pain using human 
neuroimaging and rat electrophysiology across three studies. In study 1, we 
found that painful stimuli preferentially activated the medial-dorsal (MD) 
thalamic nucleus and its functional connectivity with the dorsal anterior 
cingulate cortex (dACC) and insula in two human functional magnetic 
resonance imaging (fMRI) datasets (n = 399 and n = 25). In study 2, human 
fMRI and electroencephalography fusion analyses (n = 220) revealed that 
pain-preferential MD responses were identified 89–295 ms after painful 
stimuli. In study 3, rat electrophysiology further showed that painful stimuli 
preferentially activated MD neurons and MD–ACC connectivity. These 
converging cross-species findings provided evidence for pain-preferential 
thalamocortical neural dynamics, which could guide future pain evaluation 
and management strategies.

Pain is an unpleasant sensory and emotional experience protecting our 
body from actual or potential damage1. Transient nociceptive stimuli 
elicit robust responses in a wide range of cortical and subcortical brain 
regions involved in sensory processing, emotion and cognition2–5, but 
whether there is a pain-preferential (that is, responding differentially 
to pain and other sensory modalities) neural pattern has been hotly 
debated in recent years. The traditional view supports that different 
senses are processed in anatomically distinct unisensory areas and 
converge onto higher-order multisensory areas6. Emerging studies 
challenge this view by showing that traditional unisensory areas are 
instead multisensory7,8. Even the visual and auditory cortices—regions 
thought to be dedicated to sight and hearing—are activated during 
pain processing2,9.

To identify pain-preferential brain responses, an earlier study 
used functional magnetic resonance imaging (fMRI) to compare 
blood-oxygen-level-dependent (BOLD) brain responses elicited by 
painful, electrotactile, visual and auditory stimuli, but only found 
somatosensory-specific (painful and electrotactile), not pain-specific 
neural activities9. Motivated by searching for more discrete and spatially 
defined pain signals, later studies used a similar experimental design 

and multivariate pattern analysis (MVPA) to identify pain-preferential 
neural responses, but findings were scattered7,10,11. Recent efforts have 
been made to control the salience effect of painful stimuli5 and consider 
genetic architectures12 when distinguishing brain responses triggered 
by pain and other sensory stimuli. Nevertheless, a pain-preferential 
neural pattern has yet to be identified.

Unlike other sensory modalities, pain is inherently unpleasant 
by definition, and pain sensation and pain emotion are closely inter-
twined13. It is thus of interest to explore whether pain-preferential neu-
ral activities could be identified in specific pain-ascending pathways, 
especially those associated with emotional processing14. As an ascend-
ing hub of most sensory signals, the thalamus consists of multiple 
nuclei, whose connections with different cortical areas may underlie the 
processing of different modality information. Previous animal studies 
have identified two distinct thalamocortical pathways for pain process-
ing: the lateral pathway from lateral thalamic nuclei to primary and sec-
ondary somatosensory cortices (S1 and S2) for sensory-discriminative 
processing, and the medial pathway from medial thalamic nuclei to 
the prefrontal cortex and ACC for affective-motivational processing14. 
However, few studies have specifically investigated the distinct roles of 
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range of brain regions. We observed many spatial overlaps in both 
cortical and subcortical regions (Fig. 2b). BOLD responses in most of 
these brain regions were significantly associated with subjective pain 
reports (Supplementary Fig. 1).

We then parcellated the thalamus into seven distinct nuclei 
(anterior, pulvinar, medial-dorsal (MD), ventral anterior (VA), ventral 
latero-ventral (VLV), ventral latero-dorsal (VLD) and central lateral (CL)) 
in each hemisphere (Fig. 3a) using a probabilistic atlas of the human tha-
lamic atlas16. On the basis of the results of GLM analyses, we performed 
conjunction analyses and found that the posterior part of the ventral 
lateral thalamus (ventral posterior lateral (VPL)) was preferentially 
activated by somatosensory stimuli (that is, the cluster was signifi-
cantly activated by painful and electrotactile stimuli but not by visual 
and auditory stimuli; P < 0.001 at voxel level and PFDR < 0.05 at cluster 
level). The extracted BOLD signals demonstrated significant activation 
differences in the identified VPL after the onset of stimuli (that is, both 
painful and electrotactile stimuli significantly more activated the VPL 
around 4 s than did both visual and auditory stimuli; Fig. 3b). However, 
we did not observe any significant cluster showing pain-preferential 
activation on the basis of the GLM results.

Taking advantage of its high sensitivity in detecting differen-
tial brain patterns across conditions, we then used MVPA to test the 
uniqueness of the spatial patterns of thalamic BOLD signals (rather 
than achieving optimal accuracies using whole-brain voxels) elicited 
by stimuli in each sensory modality. We constructed support vector 
machine (SVM)-based binary classifiers to discriminate four modalities 
of stimuli using the normalized BOLD fMRI signals (to rule out the bulk 
differences (for example, arousal and attention) in the magnitude of 
responses to different stimuli) in the thalamus as features (see section 
on ‘MVPA for fMRI’). We used the second volume after each stimulus 
onset for the MVPA as this volume contained the peak BOLD responses 
elicited by each stimulus (that is, most likely to contain stimulus-related 
information). Six binary classifiers were performed: pain (P) versus 
touch (T), pain (P) versus vision (V), pain (P) versus audition (A), touch 
(T) versus vision (V), touch (T) versus audition (A) and vision (V) versus 
audition (A). Figure 3c shows the spatial ‘activation patterns’ (forward 
model based on Haufe’s method; Methods) that significantly contrib-
uted to the discriminations and the classification accuracies for each 
classifier (P versus T, 58.3 ± 10.4%; P versus V, 68.5 ± 11.2%; P versus A, 

these two thalamocortical pathways in humans15, and almost no human 
study has assessed whether the thalamocortical pathways, especially 
the medial pathway, are preferentially for pain processing. Moreover, 
the temporal information (for example, sequential or parallel process-
ing) of thalamocortical neural dynamics in encoding pain is unknown 
and the clinical translational values of the plausible pain-preferential 
pathway are unrevealed.

In the present study, we aimed to identify pain-preferential thalam-
ocortical neural dynamics by applying advanced analytic techniques 
to human neuroimaging and rat electrophysiology datasets (Fig. 1).  
Specifically, we aimed to address the following three research questions 
(Fig. 1a): (1) Can we identify pain-preferential thalamic responses and 
thalamocortical connectivity? (2) Can we identify pain-preferential tha-
lamic spatiotemporal neural dynamics? (3) Can the pain-preferential 
thalamocortical neural dynamics be validated in directly measured 
neuronal responses?

To address these questions, we delivered different modalities 
of sensory stimulation (pain, touch, vision and audition) to a large 
sample of healthy participants (n = 399) and collected their fMRI and 
electroencephalography (EEG) data. We used these data to identify 
pain-preferential thalamocortical neural dynamics (studies 1 and 2) 
based on a machine learning approach (MVPA) and an EEG–fMRI fusion 
algorithm. In addition, we performed an independent behavioural and 
fMRI experiment (n = 25) with calibrated stimulus intensity to control 
salience effects on thalamic fMRI responses. Last, we collected rat 
neuronal spikes when they received painful and electrotactile stimuli. 
These data enabled us to precisely and directly compare thalamocorti-
cal neural dynamics between painful and non-painful somatosensory 
stimulation (study 3).

Results
Thalamic fMRI responses and thalamocortical connectivity
Simple and isolated sensory stimuli (painful, electrotactile, visual and 
auditory) of two intensities (high and low) were delivered to 399 healthy 
participants (Fig. 2a; Methods). Brain responses corresponding to 
these stimuli were acquired using fMRI in two blocks. We first used 
general linear modelling (GLM) to identify the brain regions activated 
by the four modalities of stimuli. Similar to previous studies7,9, differ-
ent modalities of sensory stimuli elicited consistent activity in a wide 
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Fig. 1 | Research questions and design. a, This study aims to answer three 
questions (Q1–3) using three human neuroimaging datasets and a rat 
electrophysiology dataset. b, We acquired fMRI, EEG and SCR data (datasets 1–3) 
to identify pain-preferential thalamic responses, thalamocortical connectivity 
and thalamic spatiotemporal neural dynamics (studies 1 and 2). We further 

validated the pain-preferential thalamocortical dynamics (study 3) in the rat 
electrophysiology dataset (dataset 4). c, In the human experiments (datasets 
1–3), participants received four modalities of stimuli: painful, electrotactile, 
visual and auditory; in the rat experiment, subjects received painful and 
electrotactile stimuli. This figure was created with BioRender.com.
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70.5 ± 10.7%; T versus V, 66.1 ± 10.7%; T versus A, 68.4 ± 10.3%). Over-
all, BOLD signals in the thalamus could significantly distinguish the 
four modalities of stimuli (the classification accuracies were signifi-
cantly above 50% in all six classifiers; one-sample t-tests against 50%, 
all P < 0.001). We then performed a conjunction analysis across the 
activation patterns discriminating pain and the other three modalities. 
We found that BOLD signals in the MD were significantly higher after 
receiving painful stimuli than electrotactile, visual and auditory stimuli 
(all P < 0.001; Fig. 3d). To minimize the possible influence of differences 
in subjective pain reports, which are highly associated with stimulus 
salience, we adopted a within-individual matching procedure to equal-
ize intensity ratings between pain and touch (see section on ‘Rating 
matching procedure’ for details of the matching algorithm). After the 
intensity matching, we found a significant interaction between brain 
regions (MD versus VPL) and modality (pain versus touch) (F1,165 = 30.08, 
P < 0.001, ηp

2 = 0.05). Post hoc tests showed that the MD responses 
(T(165) = 3.72, P = 0.00027, Cohen’s d = 0.29, 95% confidence interval 
(CI) = (0.017%, 0.057%)) but not the VPL responses (T(165) = −1.08, 
P = 0.282, Cohen’s d = 0.08, 95% CI = (−0.020%, 0.060%)) could signifi-
cantly discriminate painful and electrotactile stimuli when the intensity 
ratings were well matched (Supplementary Fig. 2).

After constructing machine learning classifiers to discriminate 
different sensory modalities, we used the same technique to distin-
guish two stimulus intensity levels within each modality (for example, 
high pain versus low pain). We found that BOLD signals in the VPL and 
MD could discriminate trials following high-pain and low-pain stimuli 
(P < 0.001 at voxel level and PFDR < 0.05 at cluster level; 31 voxels and 
16 voxels for the right and left clusters, respectively). In contrast, only 
the VPL could discriminate trials following high electrotactile and low 
electrotactile stimuli (P < 0.001 at voxel level and PFDR < 0.05 at cluster 
level; cluster size, 25 voxels; Fig. 3e). These results in Fig. 3d,e suggest 
that the MD might be preferentially activated by painful stimuli but not 
stimuli in other sensory modalities that we investigated, while the VPL 
was preferentially activated by somatosensory stimuli (for example, 
both pain and touch).

Since thalamic nuclei have distinct thalamocortical projec-
tions, we used psychophysiological interaction (PPI) to evaluate the 
task-based connectivity between the two identified nuclei patterns; 
that is, somatosensory-preferential VPL (Fig. 3b) and pain-preferential 
MD (Fig. 3d) and all other voxels in the brain (see section on ‘PPI analy-
sis’). Between-modality comparisons showed increased functional 
connectivity between the MD and dorsal anterior cingulate cortex 
(dACC) and bilateral insula (stronger in the anterior part of the insula) 
after painful stimuli as compared with electrotactile stimuli (P < 0.001 
at voxel level and PFDR < 0.05 at cluster level; Fig. 3f). However, the func-
tional connectivities between the VPL and other brain regions were 
not significantly different between painful and electrotactile stimuli.

Thalamic fMRI responses after pain–touch salience matching
To address the potential confound of differences in stimulus salience, 
particularly in thalamic BOLD responses to pain and touch, we con-
ducted an additional independent experiment collecting data from 
25 participants, who provided self-reported salience scores and psy-
chophysiological responses (skin conductance response (SCR)), as a 
recent study suggested that SCR could be an objective measure for 
salience17. The experiment comprised three main sessions (Fig. 4a): 
(1) a calibration session for familarizing and determining stimulus 
intensity for painful and electrotactile stimuli; (2) a behavioural session 
to assess participants’ perceived intensity, salience scores and SCR 
for painful and electrotactile stimuli; and (3) an MRI session to collect 
BOLD responses following calibrated stimuli with matched salience 
scores. Detailed information about the experimental procedures can 
be found in the Methods.

During the behavioural session, participants rated the intensity 
and salience of painful and electrotactile stimuli, whose physical inten-
sity was calibrated individually from the first session. There were no 
significant differences between the two modalities in intensity rat-
ing (T(24) = −1.51, P = 0.150, Cohen’s d = 0.30, 95% CI = (−0.77, 0.22);  
Fig. 4b), salience rating (T(24) = −1.91, P = 0.068, Cohen’s d = 0.38, 95% 
CI = (−0.76, 0.03); Fig. 4c) and SCR (T(24) = −0.13, P = 0.898, Cohen’s 
d = 0.03, 95% CI = (−0.77, 0.68); Fig. 4d). We observed a significant 
positive correlation between salience rating and SCR for painful (mean 
correlation r = 0.29, 95% CI = (0.18, 0.40); T(24) = 5.48, P = 1.24 × 10−5, 
one-sample t-test against zero) and electrotactile stimuli (mean correla-
tion r = 0.14, 95% CI = (0.01, 0.26); T(24) = 2.31, P = 0.030) within each 
participant. These results suggest that the calibrated stimuli effectively 
controlled the salience differences between the two modalities.

During the fMRI session, we selected a subset of stimuli in each 
participant to match the self-reported salience scores of painful and 
tactile stimuli. Specifically, for each painful stimulus with salience score 
of sp, all tactile trials with the same salience score st = sp were identified 
and one trial was selected to pair with this particular painful trial. If 
no tactile stimulus was identified, this painful trial was discarded for 
further analyses. This method ensured that the selected pairs of painful 
and electrical stimuli were completely matched on a trial-by-trial level 
in terms of their salience scores within each participant (mean ± s.d., 
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Fig. 2 | Sensory experiment and fMRI BOLD responses. a, Participants (n = 399) 
received transient stimuli of four sensory modalities (painful, electrotactile, 
visual and auditory), each comprising two stimuli intensities (high and low). After 
each stimulus, participants rated their perceived intensity using a numerical 
rating scale of 0 (no sensation) to 10 (the strongest sensation imaginable). Each 
participant performed 80 trials (20 for each sensory modality; two blocks) in 
the MRI scanner. b, BOLD responses to painful (red), electrotactile (blue), visual 
(yellow) and auditory (purple) stimuli. Results were obtained from GLM and 
thresholded at P < 0.001 at the voxel level and PFDR < 0.05 at the cluster level.
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Fig. 3 | Pain-preferential thalamic responses and thalamocortical 
connectivity. a, The thalamus was parcellated into seven distinct nuclei (anterior 
(Ant), pulvinar (Pul), MD, VA, VLV, VLD and CL) in each hemisphere using a 
probabilistic atlas of the human thalamic atlas. b, Conjunction analyses based on 
the GLM activation maps in Fig. 2b showed that the VPL (the shaded area on the 
thalamic atlas) was preferentially activated by somatosensory stimuli (painful 
and electrotactile stimuli). c, Using MVPA, BOLD signals in the thalamus could 
significantly distinguish stimuli of the four sensory modalities. The spatial 
activation patterns (shaded areas on the thalamic atlas) were located in different 
thalamic nuclei for discriminating between different sensory modalities.  
d, Conjunction analysis based on the spatial activation patterns in Fig. 3c showed 
that the MD could discriminate between pain and the other three modalities 

(all P < 0.001). e, Using MVPA, BOLD signals in the VPL and MD (shaded areas on 
the thalamic atlas) could discriminate between high and low pain, while only 
the VPL (shaded area on the thalamic atlas) could discriminate between high 
and low touch. f, Between-modality comparisons showed increased functional 
connectivity (estimated by PPI) between the MD and dACC and bilateral insula 
after painful stimuli as compared with electrotactile stimuli. Statistical maps in 
b–f were thresholded at P < 0.001 at the voxel level and PFDR < 0.05 at the cluster 
level. The bar plots in c were compared with the 50% chance level using one-
sample t-tests and thresholded at PFDR < 0.05. The bar plots in d were compared 
across different modalities using paired-sample t-tests and thresholded at 
PFDR < 0.05 (indicated by asterisks). Error bars are standard deviations with means 
as the centre. Results were obtained from 399 participants.
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4.14 ± 1.52). Moreover, the perceived intensities of painful and  
tactile trials were also not significantly different (painful, 4.15 ± 1.32; 
tactile, 4.45 ± 1.38; T(24) = 1.90, P = 0.070, Cohen’s d = 0.38, 95% 
CI = (−0.03, 0.64); Fig. 4e).

We then extracted BOLD fMRI signals (the second volume 
after each stimulus onset) in the MD and VPL and compared the 
responses between painful and electrotactile trials using two-way 
repeated-measures analysis of variance (ANOVA). The results (Fig. 4f)  
showed a significant main effect of the two nuclei (F1,24 = 28.01, 
P = 1.99 × 10−5, ηp

2 = 0.54) and a significant interaction effect of 
nuclei and modalities (F1,24 = 48.42, P = 3.40 × 10−7, ηp

2 = 0.67). Post 
hoc analyses showed that MD responses were significantly higher 
in painful trials compared to electrotactile trials (T(24) = 3.02, 
P = 0.006, Cohen’s d = 0.60, 95% CI = (0.05%, 0.25%)), but VPL 
responses were not (T(24) = 0.03, P = 0.976, Cohen’s d = 0.006, 
95% CI = (−0.08%, 0.08%)).

To externally validate our findings, we gathered and re-analysed 
data (n = 51) from a published study5 where the perceived intensity of 
painful and electrotactile stimuli was matched on the basis of individu-
ally calibrated stimulus intensity. Further details regarding the experi-
mental design and data collection can be found in Supplementary  
Fig. 3. Using this dataset, we found that the MD responses were  
significantly higher after painful stimuli than electrotactile stimuli 
(T(50) = 2.61, P = 0.012, Cohen’s d = 0.37, 95% CI = (0.02%, 0.17%);  
Supplementary Fig. 3), while VPL responses were not significantly  
different between painful and electrotactile trials (T(50) = 0.26, 
P = 0.796, Cohen’s d = 0.04, 95% CI = (−0.069%, 0.089%)).

EEG responses and EEG–fMRI fusion responses
We located the MD as a pain-preferential thalamic nucleus in the 
fMRI analyses. However, due to the low temporal resolution of fMRI, 
we were unaware of when this nucleus processed pain-preferential 
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Fig. 4 | The experimental design and results for controlling salience effects 
on thalamic BOLD responses. a, The experiment comprised three sessions: 
calibration, behavioural and MRI. b,c, With the calibrated stimulus intensity, 
participants reported comparable perceived intensity (T(24) = −1.51, P = 0.150, 
Cohen’s d = 0.30, 95% CI = (−0.77, 0.22)) and salience ratings (T(24) = −1.91, 
P = 0.068, Cohen’s d = 0.38, 95% CI = (−0.76, 0.03)) after painful and electrotactile 
stimuli in the behavioural session. d, Participants had similar levels of SCRs 
after painful and electrotactile stimuli in the behavioural session (T(24) = −0.13, 
P = 0.898, Cohen’s d = 0.03, 95% CI = (−0.77, 0.68)). e, In the fMRI session, 
after selecting trials with completely matched salience scores, participants 
had comparable perceived intensity after painful and electrotactile stimuli 

(T(24) = 1.90, P = 0.070, Cohen’s d = 0.38, 95% CI = (−0.03, 0.64)). f, In salience-
matched trials, MD responses were significantly higher in painful trials than in 
electrotactile trials (T(24) = 3.02, P = 0.006, Cohen’s d = 0.60, 95% CI = (0.05%, 
0.25%)), while VPL responses did not differ significantly between painful 
and electrotactile stimuli (T(24) = 0.03, P = 0.976, Cohen’s d = 0.006, 95% 
CI = (−0.08%, 0.08%)). Error bars represent standard deviations. Results were 
obtained from 25 participants. Paired-sample t-tests and two-way repeated-
measures ANOVA tests were used for data analyses (followed by post hoc 
comparisons using Bonferroni-corrected two-sided paired-sample t-tests).  
NS, not significant (P > 0.05); *, P < 0.05.
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information to discriminate between pain and the other three 
modalities. To address this issue, we collected EEG data from 220 
participants who also finished the fMRI experiment. Experimental 
details in the EEG dataset were almost identical to the fMRI dataset, 
except that the timings were adapted. Healthy participants received 

different modalities of sensory stimuli (painful, electrotactile,  
visual and auditory) and of two intensities (high and low), and rated 
their subjective perception using the numerical rating scale (NRS). 
We observed clear stimulus-evoked EEG responses for all sensory 
modalities (Fig. 5a).

AuditionVision

40

50

60

80

100

40

50

60

80

100

40

50

60

80

100

–500 0 500 1,000

D
ec

od
in

g 
ac

cu
ra

cy
 (%

)

–500 0 500 1,000

D
ec

od
in

g 
ac

cu
ra

cy
 (%

)

Pain versus touch

–500 0 500 1,000

D
ec

od
in

g 
ac

cu
ra

cy
 (%

)

Pain versus vision Pain versus audition

Time (ms) Time (ms) Time (ms)

c

64-channel
EEG data

t

Extract 64
channel values at t

–5
00 m

s

1,0
00 m

s

Pain

Touch

versus

Trial 1
Trial 2

Trial M-1

Training set

Trial M

Test set

Trial 1
Trial 2

Trial M-1 Trial M SVM classifier

Time t

Time-resolved
decoding matrix

b

TouchPaina

30

–30261 ms

25

–25122 ms

15

–15

Am
plitude (µV)210 ms

20

–20

Am
plitude (µV)383 ms P2

N2

Cz-noseCz-nose

N2

P2

Latency (ms)
–500 0 500 1,000

–15

–5

0

5

15

Am
pl

itu
de

 (µ
V)

–10

10

–30

0

30

Am
pl

itu
de

 (µ
V) –15

15

30

–30191 ms

25

–25

Am
plitude (µV)292 ms

10

–10154 ms

10

–10472 ms P2

N2

Cz-nose

P2

N2

Cz-nose

Latency (ms)
–500 0 500 1,000

Latency (ms)
–500 0 500 1,000

Latency (ms)
–500 0 500 1,000

–30

0

30

Am
pl

itu
de

 (µ
V) –15

15

–10

0

5

10

Am
pl

itu
de

 (µ
V) –5

Am
plitude (µV)

Am
plitude (µV)

Am
plitude (µV)

Am
plitude (µV)

Am
plitude (µV)

Fig. 5 | EEG time series and decoding performance. a, Sensory stimuli of 
four modalities (painful, electrotactile, visual and auditory) elicited clear 
EEG responses. b, For each time point in the peristimulus EEG signal, from 
−500 to 1,000 ms (1 ms resolution) with respect to stimulus onset, pattern 
vectors were constructed by concatenating the 64 EEG electrode measures 
into 64-dimensional vectors as features. Time-resolved MVPA was performed 
to classify pairwise between different stimulus modalities. The resultant 
classification accuracies were stored in a symmetric 4 × 4 decoding matrix per 

time point and participant. c, The time courses of neural decoding accuracy 
for distinguishing pain and the other three modalities. EEG signals could 
significantly discriminate pain and the other three modalities before 100 ms 
and remained significantly above chance at 1,000 ms after stimulus onset 
(cluster-corrected sign-permutation test; cluster-defining threshold P < 0.001, 
cluster-corrected significance level P < 0.05). Results were obtained from 220 
participants. This figure was created with BioRender.com.
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We then tested whether the scalp EEG could discriminate between 
pain and the other three modalities. For each time point in the peri-
stimulus EEG signal, from −500 to 1,000 ms (1 ms resolution) with 
respect to stimulus onset, we constructed pattern vectors by concat-
enating the 64 EEG electrode measures into 64-dimensional vectors 
as features. We performed time-resolved MVPA (with cross-validation) 
to classify pairwise between different sensory modalities (Fig. 5b). The 
resultant classification accuracies were stored in a symmetric 4 × 4 
decoding matrix (each cell indicated the accuracy that the classifier 
distinguished between two modalities) per time point and participant. 
Figure 5c shows the time courses of neural decoding accuracy for 
distinguishing pain and the other three modalities by averaging the 
cells in the decoding matrix across participants. We found that EEG 
signals could significantly discriminate pain and other three modali-
ties before 100 ms (decoding first reaches significance, pain versus 
touch 27 ms; pain versus vision 76 ms; pain versus audition 97 ms) 
and remained significantly above chance until >1,000 ms after stimu-
lus onset (cluster-corrected sign-permutation test; cluster-defining 
threshold P < 0.001, cluster-corrected significance level P < 0.05). 
Direct comparisons of the decoding time courses showed that distin-
guishing pain and touch was earlier than (1) distinguishing pain and 
vision (P < 0.001, bootstrap testing) and (2) distinguishing pain and 
audition (P < 0.001, bootstrap testing).

Since both fMRI signals in the MD and scalp EEG responses could 
discriminate pain and the other three modalities, we then examined 
if they were associated and could represent distinct thalamocortical 
neural dynamics during a particular time window when the pain was 
experienced. Leveraging the data from these participants (n = 220) 
who performed both fMRI and EEG experiments, we used the EEG–fMRI 
fusion technique (see section on ‘EEG–fMRI fusion analysis’) to inves-
tigate when representations extracted from EEG were correlated with 
those extracted from fMRI in the MD. This computational approach 
enabled us to resolve human brain responses in space and time based on 

the suggestion that the thalamocortical neural dynamics are measured 
in particular locations at particular time points18.

In brief (Fig. 6a), we built a decoding vector including 12 binary 
tasks to discriminate pain and the other three modalities (high/low 
pain versus high/low touch/vision/audition, at within-participant 
level). For fMRI, we used voxel-wise BOLD signals (the second volume 
after each stimulus) in the MD as features for these 12 classification 
tasks, resulting in a vector of classification accuracies (fMRI dissimi-
larity vector) for each participant. For EEG, we used 64-channel EEG 
data at each time point as features for these 12 classification tasks, 
resulting in a vector of classification accuracies (EEG dissimilarity 
vector) for each time point and each participant. We then evaluated 
the extent of representational similarity between participant-level 
fMRI in the MD and EEG by computing Spearman’s rank-order correla-
tions between fMRI dissimilarity vector and EEG dissimilarity vectors 
(separately for each time point) (Fig. 6b). As a result, we were able to 
obtain time-resolved similarity indices for each participant and per-
form statistical analyses across 220 participants to identify the time 
window in which fMRI BOLD responses in the MD and EEG signals were 
significantly correlated when distinguishing pain and the other three 
modalities. We found that EEG dissimilarity vectors correlated with 
fMRI dissimilarity vectors in the MD between 89 and 295 ms (peaked 
at 223 ms; sign-permutation test, cluster-defining threshold P < 0.001, 
cluster-corrected significance level P < 0.05), which provided time 
stamps for MD-based thalamocortical neural dynamics during pain 
processing. We also performed the same analysis using the voxel-wise 
BOLD signals in the VPL as features. The fMRI BOLD responses in the VPL 
and EEG signals were significantly correlated earlier; that is, between 
65 and 159 ms (Supplementary Fig. 4). These results showed distinct 
temporal characteristics in the two ascending pathways; that is, starting 
earlier in processing sensory-discriminative information in the lateral 
pain pathway and later in delivering the valence-coded emotional 
information in the medial pain pathway.
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constructed. For fMRI, we used voxel-wise BOLD signals in the MD as features for 
these 12 classification tasks, resulting in a vector of classification accuracies (fMRI 
dissimilarity vector) for each participant. For EEG, we used 64-channel EEG data 
at each time point as features for these 12 classification tasks, resulting in a vector 
of classification accuracies (EEG dissimilarity vector) for each time point and 
each participant. The extent of representational similarity between participant-

level fMRI in the MD and EEG was evaluated by computing Spearman’s rank-order 
correlations between the fMRI dissimilarity vector and EEG dissimilarity vectors 
(separately for each time point). b, Averaged time-resolved similarity indices 
(across 220 participants) showed that fMRI BOLD responses in the MD and EEG 
responses were significantly correlated within the time interval ranging from 89 
to 295 ms when distinguishing pain and other three modalities (sign-permutation 
test, cluster-defining threshold P < 0.001, cluster-corrected significance level 
P < 0.05). Results were obtained from 220 participants. *, P < 0.05.
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Pain-preferential thalamic neural dynamics in rats
To further validate the pain-preferential thalamocortical dynamics, 
we collected the neuronal spike activity of rats when they received 
painful and electrotactile stimuli (n = 9; Fig. 7a,b). In Fig. 7c, all brain 
regions showed strong stimulus-evoked neuronal responses after pain-
ful stimuli. Two-way repeated-measures ANOVA revealed a significant 
main effect of stimulus intensity (F1,8 = 9.56, P = 0.014, ηp

2 = 0.54). Post 
hoc paired-sample t-tests suggested that all brain areas were modulated 
by stimulus intensity (VPL: T(8) = 2.63, P = 0.034, Cohen’s d = 2.54, 95% 
CI = (1.25, 25.18); S1: T(8) = 3.60, P = 0.007, Cohen’s d = 3.59, 95% CI = (5.64, 
25.90); MD: T(8) = 2.89, P = 0.025, Cohen’s d = 2.72, 95% CI = (2.21, 26.37); 
ACC: T(8) = 2.63, P = 0.030, Cohen’s d = 2.62, 95% CI = (2.26, 35.14)). In 
Fig. 7d, VPL showed the strongest stimulus-evoked neuronal responses 
after tactile stimuli. Two-way repeated-measures ANOVA demon-
strated a significant interaction between stimulus intensity and brain 
area (F3,24 = 4.23, P = 0.015, ηp

2 = 0.34). Post hoc paired-sample t-tests 
suggested that high-intensity stimuli induced significantly stronger 
neuronal responses than low-intensity stimuli in the VPL (T(8) = 2.32, 
P = 0.049, Cohen’s d = 2.31, 95% CI = (0.03, 28.93)) but not in other brain 
regions (S1: T(8) = 1.01, P = 0.34, Cohen’s d = 1.01, 95% CI = (−8.99, 3.50); 
MD: T(8) = 0.44, P = 0.67, Cohen’s d = 0.43, 95% CI = (−7.09, 4.83); ACC: 
T(8) = 1.74, P = 0.12, Cohen’s d = 1.72, 95% CI = (−15.29, 2.21)). These neu-
ronal spike activities directly showed that painful but not electrotactile 
stimuli preferentially elicited neuronal responses in the MD.

Spike–spike coherence (SSC) between pairs of brain regions 
showed different pathway patterns between painful and electrotac-
tile modalities. Whereas clear SSC was observed in both VPL–S1 and 
MD–ACC pathways for painful stimuli (0–200 ms, 1–40 Hz), evident 
SSC was only observed in the VPL–S1 pathway for electrotactile stimuli 
(0–100 ms, 1–40 Hz). In Fig. 7e, two-way repeated-measures ANOVA 
showed a significant main effect of stimulus intensity (F1,8 = 18.76, 
P = 0.002, ηp

2 = 0.70) and pathway (F1,8 = 21.24, P = 0.001, ηp
2 = 0.72) 

for painful stimuli. Post hoc paired-sample t-tests suggested that 
high-intensity stimuli induced significantly stronger SSC than 
low-intensity stimuli in both pathways (VPL–S1: T(8) = 2.90, P = 0.021, 
Cohen’s d = 2.85, 95% CI = (0.004, 0.035); MD–ACC: T(8) = 4.20, 
P = 0.003, Cohen’s d = 4.01, 95% CI = (0.017, 0.064)). Meanwhile, the 
MD–ACC pathway had significantly stronger SSC than the VPL–S1 path-
way in both stimulus intensities (low intensity: T(8) = 3.36, P = 0.015, 
Cohen’s d = 3.05, 95% CI = (0.01, 0.073); high intensity: T(8) = 5.81, 
P = 0.0004, Cohen’s d = 5.67, 95% CI = (0.037, 0.088)). In Fig. 7f, two-way 
repeated-measures ANOVA showed a significant main effect of the 
pathway for electrotactile stimuli (F1,8 = 83.57, P = 1.65 × 10−5, ηp

2 = 0.91). 
Post hoc paired-sample t-tests suggested that the VPL–S1 pathway 
had significantly stronger SSC than the MD–ACC pathway in both 
stimulus intensities (low intensity: T(8) = 7.64, P = 6.04 × 10−5, Cohen’s 
d = 7.64, 95% CI = (0.072, 0.134); high intensity: T(8) = 7.68, P = 2.10 × 
10−5, Cohen’s d = 8.84, 95% CI = (0.092, 0.156)).

Discussion
In this study, we identified and validated pain-preferential thalamo-
cortical neural dynamics across species. Applying MVPA decoding and 
PPI analysis to fMRI datasets (n = 399 and 25), we found that MD BOLD 
responses and MD–dACC/insula functional connectivity were prefer-
entially activated by painful stimuli (Fig. 3) and the pain-preferential 
thalamic fMRI responses were not confounded by stimulus salience 
(Fig. 4). Moving beyond the traditional fMRI studies, we applied a data 
fusion technique to a unique EEG–fMRI dataset (n = 220), which enabled 
us to temporally identify pain-preferential brain responses in the MD 
from 89 to 295 ms (Figs. 5 and 6). By placing electrodes in thalamic 
nuclei (MD and VPL) and cortical regions (ACC and S1), we validated that 
the MD and MD–ACC connectivity were also preferentially activated 
by painful stimuli in rats (Fig. 7).

Searching for pain-preferential neural activity using neuroimag-
ing techniques has been a challenging but meaningful task for both 

understanding and controlling pain19. In the last two decades, many 
studies have aimed at understanding how cortical and subcortical 
structures process nociceptive stimuli and how pain perception 
emerges from these neural processes in the human brain2,3,20,21. These 
studies have found a wide range of brain regions (for example, the 
S1, S2, cingulate cortex, insula and thalamus) that respond to painful 
stimuli and correlate with the perceived intensity of pain. The brain 
activity in these regions could constitute a ‘signature’ of the neural 
processes underlying pain and pain modulation2, and is claimed to 
serve as an objective measure for the experience of pain. However, the 
specificity of the pain ‘signature’ has been challenged since the brain 
activities in these regions are also influenced by factors other than pain 
perception, such as stimulus salience4,22 and cognitive control23,24. For 
instance, most brain responses evoked by painful stimuli can also be 
activated by equally salient but non-painful electrotactile, auditory and 
visual stimuli7,9 (see also Fig. 2b), even in patients with congenital pain 
insensitivity25. Therefore, even though the pain signature is strongly 
associated with pain, it could not be pain preferential.

Although almost all intense transient sensory stimuli are intrin-
sically salient (stand out relative to other environmental stimuli), 
pain is inherently unpleasant by definition13. This unique property 
of pain suggests that pain-preferential activity may be identified in 
the medial pain pathway responsible for pain affective processing.  
Specifically, the MD-relayed medial pathway, not the VPL-relayed lateral 
pathway, may contain pain-preferential thalamocortical neural dynam-
ics. This suggestion was confirmed by converging evidence in the 
present study, in which we directly targeted the spinothalamic tracts 
in healthy individuals (Figs. 3–6) and rats (Fig. 7). Notably, our results 
that pain-preferential activity could be identified in the MD-relayed 
medial pain pathway (between the MD and dACC/insula) also agree 
with previous human fMRI studies showing that the opercula-insular 
and cingulate cortices play a crucial role in pain processing26,27. One 
may argue that the dACC and insula do not preferentially respond to 
pain, since these brain areas are also involved in capturing attention 
to detect salient stimuli from the noise environment28. However, this 
salience perspective could not provide a sound explanation for our 
findings, since intense electrotactile, auditory and visual stimuli can 
be as salient as painful stimuli (especially when intensity ratings were 
well matched between modalities; Supplementary Figs. 2 and 3), but 
activation patterns in the MD and MD–dACC/insula connectivity can 
distinguish between painful stimuli and other non-painful stimuli. More 
importantly, we also showed that the MD but not VPL BOLD responses 
could discriminate painful and electrotactile stimuli when the salience 
levels of stimuli were comparable (Fig. 4).

To offer cross-species and multilevel (macrolevel and mesolevel) 
insights into the pain-preferential encoding of pain information in 
the MD-relayed ascending pathway, we also validated our findings 
from human participants with rodents. On the basis of an experi-
mental design similar to human studies, we confirmed that the MD 
and MD–dACC connectivity were preferentially activated by painful 
stimuli in rats (Fig. 7). Painful stimuli induced significant MD neu-
ronal responses and MD–ACC connectivity but these neural dynam-
ics were not observed following electrotactile stimuli. In contrast, 
VPL neuronal responses and VPL–S1 connectivity were elicited by 
both painful and electrotactile stimuli. Interestingly, similar to fMRI 
results, the VPL could discriminate between high and low intensities 
of painful and electrotactile stimuli, while the MD could only discrimi-
nate between high and low painful stimuli, not electrotactile stimuli. 
Although direct cross-species comparisons are difficult, the finding 
that pain-preferential thalamocortical dynamics (neuronal responses 
in the thalamus and its targeted cortex) in rats occurred around 100 ms 
after stimulus onset (Fig. 7c) were consistent with our findings from 
EEG–fMRI fusion analysis (Fig. 6b). Since fMRI is not a direct measure of 
neuronal activity29, our results from rat neuronal spikes provided direct 
evidence of the pain-preferential thalamocortical dynamics in the MD.
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Fig. 7 | Experiment and spike results in rats. a, Rats (n = 9) were permitted to 
move freely in a plastic chamber. Stimuli were delivered to the plantar surface 
of either the left or right forepaw. The neuronal activities of bilateral ACC, S1, 
MD and VPL of rats were simultaneously recorded. The rat brain slice images are 
adapted from the rat brain atlas36. b, Two intensities of painful and electrotactile 
stimuli were delivered to rats in two separate blocks. c, For painful stimuli, the 
VPL and MD, as well as S1 and ACC, showed comparable neuronal responses 
within 200 ms. All brain areas were significantly modulated by stimulus 
intensity (F1,8 = 9.56, P = 0.014; VPL: T(8) = 2.63, P = 0.034, 95% CI = (1.25, 25.18); 
S1: T(8) = 3.60, P = 0.007, 95% CI = (5.64, 25.90); MD: T(8) = 2.89, P = 0.025, 
95% CI = (2.21, 26.37); ACC: T(8) = 2.63, P = 0.030, 95% CI = (2.26, 35.14)). d, For 
electrotactile stimuli, VPL showed the strongest neuronal responses within 
100 ms. Neuronal responses evoked by high-intensity tactile stimuli were 
significantly higher than low intensity in the VPL (F3,24 = 4.23, P = 0.015; T(8) = 2.32, 
P = 0.049, 95% CI = (0.03, 28.93)). e, For painful stimuli, strong SSCs were 

observed between VPL and S1 and between MD and ACC (0–200 ms, 1–40 Hz). 
High-intensity stimuli induced significantly stronger SSC than low-intensity 
stimuli for both pathways (F1,8 = 21.24, P = 0.001; VPL–S1: T(8) = 2.90, P = 0.021, 
95% CI = (0.004, 0.035); MD–ACC: T(8) = 4.20, P = 0.003, 95% CI = (0.017, 0.064)). 
MD–ACC had significantly stronger SSC than VPL–S1 in both intensities (low 
intensity: T(8) = 3.36, P = 0.015, 95% CI = (0.01, 0.073); high intensity: T(8) = 5.81, 
P = 0.0004, 95% CI (0.037, 0.088)). f, For electrotactile stimuli, strong SSC 
was also observed between VPL and S1 (0–100 ms, 1–40 Hz) but not between 
MD and ACC. VPL–S1 had significantly stronger SSC than MD–ACC in both 
intensities (F1,8 = 83.57, P = 1.65 × 10−5; low intensity: T(8) = 7.64, P = 6.04 × 10−5, 
95% CI = (0.072, 0.134); high intensity: T(8) = 7.68, P = 2.10 × 10−5, 95% CI = (0.092, 
0.156)). Two-way repeated-measures ANOVA tests were used for all data analyses, 
followed by post hoc comparisons using Bonferroni-corrected two-sided paired 
t-tests. *, P < 0.05; **, P < 0.01.
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Understanding the thalamocortical neural dynamics in humans 
may have the potential to impact the clinical evaluation and manage-
ment of pain. A recent study indicated that functional abnormalities 
in the MD and MD–insula connectivity were associated with the patho-
physiology of chronic low back pain30. Our present study demon-
strated that the MD-based neural dynamics could be pain-preferential: 
MD responded differently to pain and other sensory modalities, 
encoding information preferentially associated with pain. Thus, the 
MD-based neural dynamics could serve as a possible neural marker 
for evaluating acute and chronic pain, offering a means to focus on 
pain-related information while minimizing irrelevant or confound-
ing factors. This is particularly relevant in patients with altered pain 
sensitivity but intact other sensory functions, such as those with neu-
ropathic pain who may exhibit pain hypersensitivity31,32 or people with 
schizophrenia who may have pain hyposensitivity33. In addition, the 
pain-preferential neural dynamics have the potential to identify targets 
for non-pharmacological interventions, for example, brain stimulation 
therapies. Apart from invasively stimulating brain regions using deep 
brain stimulation, recent advances in non-invasive deep brain stimu-
lation, such as temporal interference stimulation34 and focused ultra-
sound stimulation35, hold promise for targeting the MD-based neural 
dynamics to relieve pain. In other words, these innovative approaches 
may provide opportunities for developing effective interventions by 
modulating the activity of the MD-based neural dynamics.

There are several limitations in the study. First, we suggest that the 
pain-preferential encoding in MD is related to the inherent unpleasant-
ness of pain, but this emotion proposal needs direct testing. Although 
non-nociceptive tactile, auditory and visual stimuli are not necessarily 
valenced, some forms of these stimuli can be unpleasant, for example, 
certain affective pictures or grima, the sound of nails scratching a 
blackboard. These stimuli can serve as controls when testing the emo-
tion proposal. Second, we only considered thalamocortical dynam-
ics following transient laser stimuli. Pain can be induced by various 
methods such as mechanical pressure, contact heat, cold, ischaemia, 
electrical and chemical stimuli. Some of them can lead to sustained 
or tonic pain perception, which is clinically more relevant and more 
closely related to emotion than is transient pain. Future studies thus 
need to test whether our findings on MD and MD–ACC connectivity 
can be generalized to other pain models, especially tonic pain models. 
Third, it is still of interest to directly examine if there is any impairment 
of thalamocortical dynamics in those with chronic pain. Some studies 
have suggested altered thalamocortical connectivity in people with 
chronic pain30, but systematic research on this topic is still scarce. In 
addition to those with chronic pain, further studies can also systemati-
cally investigate whether people with specific pain insensitivity also 
exhibit abnormal MD activity or MD–ACC connectivity. Fourth, our 
study was correlational. We have shown that MD-based neural dynamics 
is pain-preferential, but the causal role of MD in pain encoding cannot 
be determined without further interventional studies. Revealing the 
causal relationship between MD-based neural dynamics is important 
not only for a deeper understanding of pain information encoding but 
also for effective treatment of pain.

Methods
Studies 1 and 2 were approved by the Ethical Committee at the Institute 
of Psychology, Chinese Academy of Sciences (reference no. H17025). All 
surgical and experimental procedures in study 3 adhered to the guide-
lines for animal experimentation by the Animal Care and Use Com-
mittee and were approved by the Ethical Committee of the Institute 
of Psychology, Chinese Academy of Sciences (reference no. H22033).

Overview
This article included three studies with four locally collected independ-
ent datasets (three neuroimaging datasets and one rat electrophysiol-
ogy dataset; not preregistered). The first three datasets included fMRI 

(dataset 1, n = 399; dataset 2, n = 25) and EEG data (dataset 3, n = 220; 
these participants also finished fMRI experiments) from healthy par-
ticipants who were experiencing different modalities of sensory stimu-
lation. Given the large sample size and a well-validated experimental 
design, the data had sufficient power to identify pain-preferential 
thalamic responses and thalamocortical connectivity (study 1). Moreo-
ver, taking advantage of the unique EEG–fMRI data (participants who 
finished the same experiment and sampled by EEG and fMRI sepa-
rately) and the state-of-the-art data fusion technique, we were able to 
characterize thalamocortical neural dynamics in space and time with 
high resolution (study 2). Dataset 4 included rat electrophysiology 
data (n = 9) where they received painful and tactile stimuli. This data-
set enabled us to precisely locate and validate the pain-preferential 
thalamocortical dynamics (study 3).

Human participants
Study 1 included 399 healthy participants from dataset 1 (160 males; age 
21.3 ± 3.8 yr, mean ± s.d.; two participants did not provide demographic 
information) and 25 healthy participants from dataset 2 (3 males; age 
22.3 ± 2.9 yr) who were pain-free and had no history of chronic pain 
and neuropsychiatric disorders. Study 2 included 220 healthy par-
ticipants (92 males; age 20.8 ± 2.3 yr) who also participated in study 
1 (dataset 1). All participants in studies 1 and 2 gave written consent 
forms. Participants were compensated monetarily for their participa-
tion in studies 1 and 2.

Rats
Study 3 used nine adult male Sprague Dawley rats (weighing  
350–450 g). Rats were housed in separate cages and were free to obtain 
water and food under controlled conditions of room temperature at 
23 °C, air humidity of 60% and a 12 h dark–light cycle.

Data acquisition
In studies 1 and 2, we acquired task-based fMRI and structural MRI 
scans using 3.0 Tesla MRI system with the standard 64-channel head 
coil (Discovery MR 750, General Electric Healthcare). Details of the 
MRI acquisition parameters for datasets 1 and 2 can be found in Sup-
plementary Table 1.

In study 2, we acquired task-based EEG data via 64 AgCl electrodes 
positioned according to the International 10–20 System, using the nose 
as reference (band-pass filter, 0.01–100 Hz; sampling rate, 1,000 Hz; 
Brain Products EEG system). Electrode impedance was kept <10 kΩ. 
Electro-oculographic signals were simultaneously recorded using two 
surface electrodes, one placed ~10 mm below the left eye and the other 
placed ~10 mm from the outer canthus of the left eye.

In study 3, we acquired the rat electrophysiological data using 
a 32-channel OmniPlex system (sampling rate 40 kHz, Plexon). The 
implantation coordinates of each brain region were selected according 
to the rat brain atlas36. For simultaneous bilateral ACC (AP, +1.2 mm; ML, 
±0.6 mm; DV, −1.2 mm from the brain surface, the same below), S1 (AP, 
+0.6 mm; ML, ±3.2 mm; DV, −1.5 mm), MD (AP, −2.3 mm; ML, ±0.8 mm; 
DV, −5.0 mm) and VPL (AP, −3.0 mm; ML, ±3.0 mm; DV, −6.0 mm) record-
ings, eight tetrodes of tungsten wires array (20 μm in diameter, Cali-
fornia Fine Wires Company) were implanted for recording multi-unit 
activity (MUA). The impedance of each tetrode was between 2 and 
2.5 MΩ. Two epidural electrodes made of stainless steel screws (diam-
eter, 1 mm) were set as reference and ground, which were placed on the 
middle line, 2 and 4 mm caudally to the lambda37, respectively. To con-
firm the microelectrode tip location in the brain tissue section, all elec-
trodes were immersed in cell red fluorescent dye DiI solution (Yeasen 
Biotechnology) before surgical implantation (Supplementary Fig. 5).

Data preprocessing
fMRI data preprocessing. The fMRI data were preprocessed and 
analysed in MATLAB (R2020a; Mathwork) using SPM12 (Wellcome 
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Trust Center for Neuroimaging). The first five volumes were discarded 
to allow time for signal equilibration. Images were corrected for 
slice-timing and head motion. The resulting images were normalized 
to the Montreal Neurological Institute space38, spatially smoothed 
using a Gaussian kernel of 3 mm full width at half maximum and tem-
porally filtered using a band-pass filter (0.01–0.10 Hz). To minimize 
the effect of head motion on the estimation of thalamic responses and 
thalamocortical connectivity, we followed the strategy suggested by 
a benchmark study39 by combining the six motion estimates and two 
physiological time series (cerebrospinal fluid and the white matter 
signals) with global signal regression.

EEG data preprocessing. The EEG data were preprocessed in MATLAB 
using the EEGLAB toolbox40. Continuous EEG data were band-pass 
filtered between 1 and 30 Hz and were segmented into epochs extend-
ing from 500 ms before stimulus onset to 1,000 ms afterwards. Each 
epoch was baseline corrected using the prestimulus interval. Trials 
contaminated by eye blinks and movements were corrected using an 
independent component analysis algorithm (‘runica’) implemented 
in the EEGLAB toolbox.

Rat neurophysiological data preprocessing. The rat neurophysi-
ological data were preprocessed using NDManager41. Raw data were 
high-pass filtered at 300 Hz and thresholded at 3 s.d. above the base-
line mean to find time intervals containing spiking events. Then, the 
waveforms of these time intervals were decomposed using a principal 
component analysis. Furthermore, the spike activity was sorted and 
grouped into clusters using KlustaKwik42 and manually screened using 
klusters41.

Study 1.1 pain-preferential thalamic responses
Experimental procedures. Participants received transient sensory 
stimulation, including painful, electrotactile, visual and auditory 
stimuli. Two stimulus intensities (high and low) were delivered for 
each sensory modality. The fMRI experiment consisted of two blocks, 
each with 40 sensory stimuli (5 stimuli for each modality and inten-
sity) delivered in the MRI scanner. After each block, participants were 
allowed to take a brief rest. The order of stimulus modality and intensity 
was pseudorandomized in each block. Each trial began with a 6 s fixa-
tion cross, which was followed by a transient sensory stimulus. At 10 s 
after the stimulus, participants were asked to move a slide to rate the 
perceived intensity of the stimulus on the 0–10 NRS (0, no sensation; 10, 
the strongest sensation imaginable for each sensory modality) shown 
on the screen within 5 s. The intertrial interval was 1–2 s. Stimuli were 
presented using E-Prime v.2.0 (Psychology Software Tools).

Sensory stimulation. A pilot behavioural experiment determined 
the intensities of sensory stimulation to ensure that the perceived 
ratings of low- and high-intensity stimuli for each sensory modality 
were approximately 4 and 7 out of 10, respectively. However, since 
painful laser stimuli of 4.0 J were unbearable for some participants, 
we divided all participants into two groups, that is, high and low pain 
sensitivity participants. High pain sensitivity participants (n = 187) 
were those who rated 4.0 J laser stimuli >8 out of 10. All remaining 
participants who rated the 4.0 J stimuli ≤8 out of 10 were assigned to 
the low pain sensitivity group (n = 212). Two stimulus energies (3.0 
and 3.5 J) were applied to participants with high pain sensitivity, while 
the other two energies (3.5 and 4.0 J) were applied to participants with 
low pain sensitivity.

Painful stimuli were transient radiant heat pulses (wavelength, 
1.34 μm; pulse duration, 4 ms) generated by an infrared neodymium 
yttrium aluminium perovskite (Nd: YAP) laser (Electronical Engineer-
ing). An optic fibre transmitted the laser beam and its diameter was set 
at ~7 mm. Laser pulses were delivered to a predefined square (5 × 5 cm2) 
on the left-hand dorsum. After each stimulus, the laser beam was 

displaced by ~1 cm in a random direction to avoid nociceptor fatigue 
or sensitization.

Electrotactile stimuli were constant current square-wave electrical 
pulses (duration, 1 ms; model DS7A, Digitimer) delivered through a pair 
of skin electrodes (1 cm interelectrode distance) placed on the left wrist 
over the superficial radial nerve. The same two stimulus intensities (2.0 
and 4.0 mA) were applied to all participants. Auditory stimuli were brief 
pure tones (frequency, 800 Hz; duration, 50 ms; 5 ms rise and fall time) 
delivered through a headphone. The same two stimulus intensities (76 
and 88 dB SPL) were used for all participants. Visual stimuli were brief 
flashes of a grey round disk in a black background (duration, 100 ms) 
on a computer screen. The stimulus intensities were adjusted using 
the greyscale of the round disk, which corresponded to RGB values of 
(100, 100, 100) and (200, 200, 200), respectively.

fMRI GLM and conjunction analyses. Single-subject task fMRI data, 
including functional runs from two blocks, were analysed using a GLM 
approach to model each stimulus type (pain (P), touch (T), vision (V) 
and audition (A)) and rating scale as events. Regressors representing 
the experimental paradigm were then modelled by convolving boxcar 
functions for each regressor with a canonical haemodynamic response 
function. After model estimation, we defined contrasts to identify 
brain responses to different modalities of sensory stimulation using 
a random-effects analysis with a one-sample t-test. The significance 
threshold was set as P < 0.001 at the voxel level and PFDR < 0.05 at the 
cluster level (false discovery rate (FDR) correction for multiple com-
parisons) in the whole-brain exploratory analyses. Note that we used 
two-sided tests whenever applicable.

After obtaining the statistical maps of four stimulus types  
(P, T, V and A), we aimed to identify somatosensory-preferential and 
pain-preferential thalamic responses by thresholding t values of the 
four maps in the thalamus as follows: somatosensory preferential: 
P > 3.1 and T > 3.1 and V ≤ 3.1 and A ≤ 3.1; pain preferential: P > 3.1 and 
T ≤ 3.1 and V ≤ 3.1 and A ≤ 3.1 (t values > 3.1 corresponds to P < 0.001). 
After identifying the conjunction regions that pass the statistical 
thresholds, we extracted the normalized BOLD time series in the iden-
tified regions from −4 to 10 s relative to the stimulus onset for each 
stimulus type.

MVPA for fMRI. We constructed SVM-based binary classifiers to 
discriminate four modalities of stimuli within each participant. 
For each modality, the normalized BOLD fMRI signals (the second  
volume after each stimulus onset) in the thalamus were used as fea-
tures, yielding N pattern vectors per modality (N = 20 trials in the 
present study). We used a linear SVM classifier (LIBSVM toolbox)43, 
with a leave-one-pair-out cross-validation approach, to train the SVM 
classifier to pairwise decode any two modalities. Specifically, for each 
participant and pair of modalities (for example, low pain versus low 
touch; we did not perform classification across different intensities, 
for example, high pain versus low touch, to eliminate the effects of 
stimulus intensity), N − 1 pattern vectors for each modality consisted 
of the training set and the remaining pattern vector was used as the test 
set. This procedure was repeated N times, with each subsample being 
the test set once. To avoid a potential bias of training-test splits, the 
cross-validation was performed ten times with random reassignment 
of the data to training and test sets. The performance of the classifier 
to distinguish two modalities was evaluated for each participant.

To identify neural patterns underlying the classifications of dif-
ferent sensory modalities, we first transformed the within-participant 
pattern vectors of classification weights to ‘activation patterns’ using 
the method described in previous studies44,45. This procedure was per-
formed since the predictive brain regions could be related to sensory 
modality as well as suppressing the noise in the data45. We then evaluate 
the consistency of within-participant neural patterns in discriminating 
different sensory modalities by performing one-sample t-tests against 
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zero across participants. A thresholded map (PFDR < 0.05) was used to 
show the consistent discriminative effect of each paired modality (for 
example, pain versus touch). To identify a pain-preferential neural 
pattern, we isolated the conjunct part of three thresholded maps: pain 
versus touch, pain versus vision and pain versus audition. That is, the 
neural pattern that could discriminate between pain and the other 
three modalities.

In addition to discriminating different modalities, we also per-
formed SVM classification within each modality to discriminate 
between low and high intensities (for example, high and low pain). The 
procedures and approaches were identical to what we described above.

PPI analysis. We used the identified pain-preferential MD and 
somatosensory-preferential VPL as seeds to perform the seed-to-voxel 
PPI analysis to study the thalamocortical functional connectivity when 
participants experienced different modalities of sensory stimula-
tion46,47. For each participant, PPI effects were estimated for differ-
ent sensory modalities. Individual PPI values for each seed were then 
compared between different modalities (for example, PPIpain versus 
PPItouch) using paired-sample t-tests. The thresholded statistical maps 
(PFDR < 0.05) were used to show significantly different thalamocorti-
cal functional connectivity when experiencing stimuli of different  
sensory modalities.

Rating matching procedure. Subjective intensity ratings are highly 
correlated with stimulus salience in well-controlled experimental 
design (for example, when transient stimuli are delivered in isola-
tion). As a result, any difference in perceptual ratings may result in an 
incompatible salience level between modalities. To control for this 
possible confounding factor, we adopted a rating matching procedure 
to equalize intensity ratings between pain and touch, since they (both as 
submodalities of somatosensation) are more comparable than pain and 
audition or vision. To rule out the influence of individual differences, 
we matched pain intensity ratings and electrotactile intensity ratings 
in a within-individual manner. Specifically, we manually screened 
participants whose pain intensity ratings and electrotactile intensity 
ratings were not significantly different, namely the 95% CI of the rating 
differences contained 0. With this matching criterion, 166 participants 
were selected. Due to the high correlation between intensity and sali-
ence, the salience level of painful stimuli and electrical stimuli in these 
participants would be comparable.

Study 1.2—thalamic responses after salience-matched stimuli
Experimental procedures. All experimental sessions (calibration 
session, behavioural session and MRI session) were conducted within a 
single day and under identical experimental conditions. The 25 partici-
pants received transient stimuli from two sensory modalities: painful 
and electrotactile. The devices and parameters used were identical to 
the main experiment as we described above. The ascending method of 
limits (increasing the stimulus energy in steps of 0.25 J or 0.25 mA until 
the target rating was reported) was used in the calibration session to 
determine the laser/electrical energies for each individual when they 
had subjective ratings of 5 and 8, respectively. The energies averaged 
across three tests were used for the following sessions.

Following the calibration session, participants were presented 
with painful and electrotactile stimuli, each at two different intensities 
(high and low). The behavioural experiment consisted of a single block 
of 40 sensory stimuli, with 10 trials for each stimulus intensity in each 
sensory modality. The order of stimulus modality and intensity was 
pseudorandomized. Each trial began with a 2 s fixation cross, followed 
by a transient sensory stimulus. Participants were asked to orally report 
the perceived intensity and salience of the stimulus separately on the 
0–10 NRS within 4 s after the stimulus and 6 s before the start of the 
next trial. A rating of 0 represented no sensation or salience, while 10 
represented the strongest sensation or highest salience imaginable 

for each sensory modality. The stimulus salience was explained to 
participants as ‘the ability of the stimulus to capture attention’. The 
intertrial interval was 7–8 s. The timings and sequence of the experi-
ment are detailed in Supplementary Fig. 6. During the behavioural 
experiment, electrodermal activity was recorded using a pair of surface 
round electrodes attached to the medial phalanges of the index and 
middle fingers of the participant’s left hand. The electrodes were con-
nected to Lead108 carbon leads from BIOPAC Systems and the signal 
was amplified using an MP150 analogue amplifier (BIOPAC Systems). 
Signals were digitized at a sampling rate of 2,000 Hz using a CED 1401 
analogue-to-digital converter (Cambridge Electronic Design).

The fMRI experiment consisted of two blocks, each with 40  
sensory stimuli (10 stimuli for each modality and intensity) delivered 
in the MRI scanner, using the same stimulus intensities as in the behav-
ioural experiment. The order of stimulus modality and intensity was 
pseudorandomized in each block. Each trial began with a 6 s fixation 
cross, followed by a transient sensory stimulus. Participants were asked 
to rate the perceived intensity and salience of the stimulus separately 
using the 0–10 NRS shown on the screen within 5 s after the stimulus 
and the intertrial interval was 1–2 s (Supplementary Fig. 6). Stimuli were 
presented using E-Prime 2.0 (Psychology Software Tools).

SCR analysis. SCR analysis was performed using the Ledalab  
toolbox for MATLAB48. To facilitate subsequent processing, the data 
were downsampled to 500 Hz. Subsequently, continuous decomposi-
tion analysis was used to decompose the raw data into phasic and tonic 
components. The phasic SCR was computed on the basis of the phasic 
component and the maximum value of phasic activity was determined 
for each experimental stimulus within the response window (1–4 s after 
stimulus onset).

Study 2—pain-preferential MD spatiotemporal neural 
dynamics
Experimental procedures. The 220 participants who participated in 
study 1 received different modalities of sensory stimulation during EEG 
recording. The EEG experiment consisted of three blocks (40 sensory 
stimuli in each block). The structure of each trial was similar to the fMRI 
experiment, except the timings were adjusted. Each trial began with a 
3 s fixation cross, followed by a transient sensory stimulus. At 3 s after 
the stimulus, participants were asked to verbally rate the perceived 
intensity of the stimulus using the 0–10 NRS within 5 s. The intertrial 
interval was 1–3 s. Stimuli were presented using E-Prime 2.0 (Psychol-
ogy Software Tools).

Sensory stimulation. Sensory stimuli used in study 2 were identical 
to those in study 1.1.

Time-resolved MVPA for EEG. For each time point in the peristimulus 
EEG signal, from −500 to 1,000 ms (1 ms resolution) with respect to 
stimulus onset, we constructed pattern vectors by concatenating the 
64 EEG electrode measures into 64-dimensional vectors as features. 
We used a leave-one-pair-out cross-validation approach to train and 
test the SVM classifier to discriminate between any pair of sensory 
modalities. The classification procedure was similar to the fMRI MVPA. 
The resultant classification accuracies were stored in a symmetric 4 × 4 
decoding matrix (each cell indicated the accuracy that the classifier 
distinguished between two modalities; accuracies across different 
intensities were averaged), with rows and columns indexed by the 
modalities classified. This procedure was repeated for each time point 
and pair of modalities, yielding one 4 × 4 matrix of decoding accuracies 
for every time point.

EEG–fMRI fusion analysis. The technical details of EEG–fMRI fusion 
were comprehensively described in a recent paper18. This method 
could link multivariate response patterns of the human brain recorded 
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using fMRI and EEG based on the representational similarity. In this 
study, the procedures were shown in Fig. 5a. We built a classification 
assignment, including 12 binary tasks to discriminate pain and three 
modalities (high/low pain versus high/low touch/vision/audition, at 
within-participant level), to link response patterns in datasets sampled 
using two different recording techniques. For fMRI, we used voxel-wise 
BOLD signals in the MD as features, resulting in a vector of classification 
accuracies (fMRI dissimilarity vector) for each participant. For EEG, 
we used 64-channel EEG data at each time point as features, resulting 
in a vector of classification accuracies (EEG dissimilarity vector) for 
each time point and each participant. We then evaluated the extent 
of similar representations between participant-level fMRI in the MD 
and EEG by computing Spearman’s rank-order correlations between 
fMRI dissimilarity vector and EEG dissimilarity vectors (separately 
for each time point).

Study 3—pain-preferential thalamocortical dynamics in rats
Experimental procedures. Details of the surgical procedure are 
given in our previous publications49,50. Animal experiments included 
two blocks. The painful and electrotactile stimuli of two intensities 
(high and low) were applied to the rat’s forepaw and there were 30/40 
trials for each stimulus intensity. The painful stimuli were similar to 
the human study but a small laser spot (diameter, ~5 mm) was used, 
with low- and high-intensity laser stimuli set to 2.5 and 3.5 J, respec-
tively. The electrotactile stimuli were constant current square-wave 
electrical pulses (duration, 1 ms), with low- and high-intensity elec-
trical stimuli adjusted at 500 μA and 1 mA, respectively. During the 
signal recording session, a rat was placed into a plastic chamber 
(30 × 30 × 40 cm3) and allowed to move freely. The chamber floor 
was a stainless steel mesh plate with regular holes with a diameter of 
5 mm to facilitate stimulation. When the animal was spontaneously 
motionless, stimulation was delivered on the plantar surface of the 
left or right forepaw via holes in the chamber floor. To avoid potential 
sensory interference, we always performed the electrotactile block 
first and let rats rest for about 30 min before the painful block. The 
order of stimulation site and intensity was pseudorandomized in 
each block. The interstimulus intervals of electrotactile and pain-
ful stimuli were >20 and >40 s, respectively. After the experiment, 
the rats were perfused, their brain tissues were sectioned consecu-
tively and the electrode position was verified by digital microscope 
photography.

Data analysis. Since the MUA is considered to be a reliable repre-
sentative of the average spiking of small neuronal populations near the 
microelectrode tip51, the MUA was grouped and averaged to represent 
the neuronal responses in each brain region (ACC, S1, MD and VPL). The 
raw data were initially segmented into a 1,500 ms time window (−500 
to 1,000 ms to stimulus onset). A shorter time window (−200–600 ms) 
was used to display the spike firing responses for both modalities. To 
compare the modulation of spike firing rates by painful and electrotac-
tile stimuli, the trial averaged spike firing rate of MUA was smoothed by 
a Gaussian kernel with 10 ms using the psth.m function of the Chronux 
toolbox52 and then normalized by subtracting the spontaneous activ-
ity of prestimulus interval. For painful and electrotactile stimuli, we 
extracted the mean firing rates within 200 and 100 ms after stimulus 
onset for each brain region (VPL, S1, MD and ACC) and each stimulus 
intensity (low and high), respectively.

To assess the relationship of spiking activities sampled at four 
brain regions, we calculated the SSC using the cohgrampb function 
of the Chronux toolbox52. This method is suitable for computing 
the two binned point processes of spike activity and calculating a 
multitaper time–frequency coherence. For the multitaper estimate, 
the time-bandwidth product was set as three and five tapers were 
used. Specifically, the Fourier transforms of the two signals (x, binned 
point process data of one brain region; y, binned point process data 

of another brain region) were used to calculate multitaper estimates 
across spectra Sxy(f). Time–frequency distributions of SSC were 
calculated using a 100 ms sliding window, with a step of 10 ms. For 
each frequency and trial, SSC was normalized by subtracting the 
mean of the prestimulus interval. Finally, according to the distribu-
tion of the time–frequency coherogram, the mean coherence value 
extracted within the time–frequency region showed apparent coher-
ence (0–200 ms, 1–40 Hz for painful stimuli; 0–100 ms, 1–40 Hz for 
electrotactile stimuli) for each stimulus intensity (low and high) and 
pathway (VPL–S1 and MD–ACC).

Statistical considerations
All statistical tests were two-sided unless otherwise stated explicitly. 
When statistical assumptions were unlikely to be met, permutation 
tests and bootstrap tests were adopted.

Permutation test. Nonparametric permutation tests were used for 
cluster-size inference of (1) EEG decoding time series and (2) EEG–fMRI 
time-resolved similarity indices53. The details are described in previous 
studies54,55. In this study, the null hypotheses were (1) the EEG decoding 
time series was equal to 50% chance level; (2) the correlation of the 
EEG decoding matrices and fMRI decoding matrix was equal to 0. We 
permuted the labels (for example, pain or touch) of the EEG data, which 
was equivalent to a sign-permutation test that randomly multiplied 
the EEG decoding accuracies/ EEG–fMRI decoding correlations with +1 
or −1. We used 1,000 permutations, 0.001 cluster-defining threshold 
and 0.05 cluster threshold to identify the time windows during which 
(1) EEG data could significantly discriminate between pain and other 
three modalities and (2) fMRI BOLD responses in the MD and EEG 
responses were significantly correlated when distinguishing pain and 
other three modalities.

Bootstrap test. Bootstrap tests were used to evaluate the latency 
differences in the EEG decoding time series. We created 1,000 boot-
strapped samples by sampling the participants with replacement. 
For each bootstrap sample, we repeated the exact data analysis as the 
original data, resulting in bootstrap estimates of onset latencies and 
thus determining their 95% CI.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Individual fMRI, EEG and rodent electrophysiological data are avail-
able at ScienceDB (https://doi.org/10.57760/sciencedb.psych.00120).

Code availability
MRI and EEG data analyses were based on standard procedures and 
codes in SPM and EEGLAB. The machine learning based analyses were 
based on the codes in LIBSVM. Customized codes for EEG-fMRI fusion 
can be requested from the corresponding authors.
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Statistical modeling & inference
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intensities. For RSA, we tested the extent of similar representations between participant-level fMRI in the MD and EEG by 
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(See Eklund et al. 2016)

Cluster-based inference. P<0.001 at the voxel level and pFDR<0.05 at the cluster level.
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Graph analysis
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Functional and/or effective connectivity Connectivity was computed using the Psychophysiological interaction (PPI) analysis.

Graph analysis

Multivariate modeling and predictive analysis The independent variables are the normalized BOLD fMRI signals (the 2nd volume after each stimulus onset) 
in the thalamus. A linear SVM classifier was used with leave-one-pair-out cross-validation approach. The 
performance of the classifier was assessed using the classification accuracy.
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