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Placebo and nocebo effects are salubrious benefits and negative outcomes attributable to non-specific symbolic components.
Leveraging advanced experimental and analytical approaches, recent studies have elucidated complicated neural mechanisms that
may serve as a solid basis for harnessing the powerful self-healing and self-harming capacities and applying these findings to
improve medical practice and minimize the unintended exacerbation of symptoms in medical practice. We review advances in
employing psychosocial, pharmacological, and neuromodulation approaches to modulate/harness placebo and nocebo effects.
While these approaches show promising potential, translating these research findings into clinical settings still requires careful
methodological, technical, and ethical considerations.
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INTRODUCTION
Placebo and nocebo effects are essential components of clinical
practice and efficacy research [1]. They occur in both experimental
and clinical contexts when a pure inert treatment is administered
on its own or as part of active treatments. A significant proportion
of clinical improvement, particularly the subjective symptom relief,
may be attributable to placebo effects [2, 3]. In contrast, nocebo
effects are a major concern for clinical care since patients are often
non-compliant, make unnecessary medical visits, and take
additional medications to counteract adverse effects that are
actually nocebo effects [4–6]. Placebo and nocebo effects have
been observed in a plethora of conditions including pain,
Parkinson’s disease, depression, anxiety disorders, immunologic
responses, cardiovascular functions, and sleep disorders [7].
In recent years, considerable efforts have been made to

conceptualize placebo and nocebo effects in a broad variety of
disciplines from clinical sciences to cognitive neuroscience and
social sciences. The improved understanding of placebo and
nocebo effects has built a basis for the crucial next step: shifting
from understanding their biopsychosocial mechanisms through
systematic observation to modulating placebo and nocebo effects
through experimental paradigms/designs or brain stimulation
methods. The proposed research focus shift echoes the growing
interest in optimizing placebo effects to improve therapeutic
outcomes and minimizing nocebo effects to avoid unintended
exacerbation of symptoms in medical practice.
This review discusses recent advances in placebo and nocebo

research in moving from observation to experimental mechanistic
modulation and finally to clinical practice. We first briefly survey
key mechanisms involved in the placebo and nocebo effects.
Based on these mechanisms, we then discuss recent attempts at
modulating these effects using psychosocial, pharmacological,
and neuromodulation approaches. Finally, we discuss approaches

and challenges to harness these effects ethically and effectively in
clinical settings. We will focus on placebo analgesia and nocebo
hyperalgesia as the majority of placebo and nocebo research
centers on pain; we will also highlight mechanistic heterogeneity
of placebo and nocebo effects in other domains/conditions as
appropriate.

BEHAVIORAL AND NEURAL BASES FOR HARNESSING PLACEBO
AND NOCEBO EFFECTS
Behavioral bases of placebo and nocebo effects
Expectations and learning are two frequently studied behavioral
mechanisms associated with placebo and nocebo effects [1, 8].
Numerous studies have demonstrated that expectations of
receiving treatment induce placebo and nocebo effects [9, 10].
Expectations can be generated through verbal information
[11, 12], which involves the provision of direct information about
the efficacy of treatment. Alternatively, expectations can be
created by associative learning, especially classic conditioning,
which repetitively pairs a neutral cue with an active treatment
[13]. Conditioning-based expectations have been shown to exert
strong effects on pain (i.e., placebo analgesia and nocebo
hyperalgesia) [14–21] and other subjective symptoms including
emotion, Parkinson’s disease, and depression [22].
Aside from learning from direct experience (i.e., classic

conditioning), observational conditioning may also produce
placebo and nocebo effects. Studies have demonstrated that
participants will feel less pain after receiving treatment if they see
this treatment is effective in others [23–25]. Similarly, cue-based
expectations can be learned from observing others’ painful
experiences, and in turn modulate subsequent subjective percep-
tion [15, 26]. Although most of these studies have focused on the
reduction of pain, the effects of social learning may be generalized
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to other modalities [27], for example, psychogenic illness [28, 29].
Therefore, social learning is a major routine for the transmission of
placebo/nocebo effects and produces substantial effects on the
associated brain processes.
Recent placebo research showed operant conditioning as a new

mechanism of placebo effects [30]. In operant conditioning,
responses, instead of cues, are reinforced. In a recent study [31],
participants’ pain ratings of identical electrocutaneous pain stimuli
preceded by visual cues were either verbally rewarded or
punished. Placebo analgesia was successfully established by
rewarding low ratings and punishing high ratings, and, interest-
ingly, seemed resistant to extinction. Another study revealed that
operant conditioning generated greater placebo analgesia than
classical conditioning and that mechanical pain-induced brain
activities in the ipsilateral S1 and contralateral lingual gyrus were
reduced more by operant conditioning [32]. These findings
revealed that patients can learn placebo analgesia as a result of
operant learning. Altogether, these studies suggest that expecta-
tions can be finely tuned by different forms of learning and, thus,
may provide flexible and alternative ways to induce placebos in
medical practice.
Apart from expectations and learning, other behavioral bases of

placebo and nocebo effects have also been proposed. For
example, the desire for pain relief has been suggested as a key
contributor to placebo analgesia [33]. In an early study, combined
with expectations, the desire for pain relief explained approxi-
mately 80% of the variance of placebo analgesia in irritable bowel
syndrome patients [34]. However, perhaps due to limited sample
sizes and specific painful stimuli used, desire did not exert a
unique influence on placebo effects, but interacted with expecta-
tions to modulate placebo analgesia [34]. Reducing negative
emotions also have been posited to mediate placebo effects
[35, 36]. Some studies have demonstrated that induced fear of
pain could weaken the magnitude of placebo analgesia [37].
However, compared with expectations and learning, these
behavioral bases are still under-investigated and require further
research.

Neural responses underlying placebo and nocebo effects
Earlier studies have shown that placebo analgesia can be blocked
by naloxone, indicating that the endogenous opioid and
descending pain modulatory system (DPMS) play a crucial role
in placebo analgesia [38]. Key regions in the DPMS originate in the
cingulate cortex and prefrontal cortex (PFC) and project directly
and indirectly to the periaqueductal gray (PAG), and the PAG in
turn sends projections to the rostroventral medulla (RVM) and
spinal cord. Recent brain imaging studies provide further support
for the involvement of the DPMS in mediating placebo analgesia
and nocebo hyperalgesia [39, 40]. Functional magnetic resonance
imaging (fMRI) and positron emission tomography (PET) studies
have shown placebo-related activity increases in brain regions
including the cingulate cortex, ventromedial PFC (vmPFC),
dorsolateral PFC (DLPFC), anterior insula, PAG, and RVM
[39, 41–47]. Nevertheless, it is still not clear at which stage the
DPMS inhibits the noxious signal input. Two participant-level
meta-analyses of 20 functional neuroimaging studies in 603
participants have confirmed that placebo analgesia only has small
effects on the ‘neurologic pain signature’, a machine learning-
derived functional imaging correlates of pain [48], but is likely to
act at the level of several brain networks beyond nociception that
may be important for the emotions, decision making, and
behaviors surrounding pain [49, 50]. Furthermore, the release of
endogenous opioids in the DPMS could be relatively slow, so they
are less likely to mediate cue-based expectations on pain, which is
expected to be transient and reversible [9]. Thus, the DPMS may
be just one of the mechanisms underlying placebo analgesia.
The reward system is another likely neural underpinning of

placebo analgesia since symptom reduction (decreased suffering)

is a special case of reward. Furthermore, the expectation is closely
related to the activation of tegmental or prefrontal dopaminergic
neurons that project to the dorsal and ventral striatum/nucleus
accumbens (VS/NAc) [51–53]. Across studies, placebo analgesia
increased fMRI responses [54, 55], opioid [44, 45, 56], and
dopamine [44] activities in the NAc during pain. Importantly, the
isolated brain regions (e.g., NAc and PFC) in the reward system
form the mesocortical (originates from the ventral tegmental area
[VTA] and projects primarily to the frontal lobe, e.g., rostral
anterior cingulate cortex [rACC]) and mesolimbic pathways
(originates from the VTA and projects primarily to the ventral
striatum, e.g., NAc) to encode expectancy effects on pain (i.e.,
placebo analgesia and nocebo hyperalgesia), and to explain
individual differences of the magnitudes of placebo and nocebo
effects [14]. Apart from placebo analgesia, the reward system is
also implicated in placebo effects in Parkinson’s disease. An early
PET study showed that placebos trigger the release of endogen-
ous dopamine in the striatum [51]. Later studies reconfirmed the
involvement of dopamine release in the dorsal and ventral
striatum in placebo effects in Parkinson’s disease [57].
It is still under debate whether placebo and nocebo effects are

engaged in the same brain network with opposite activity
directions [58]. Some studies have suggested that the DPMS and
reward system might be essential for both placebo and nocebo
effects [14, 44, 59–61]. They elicit opposite responses of
endogenous opioid neurotransmission in the DPMS and of
dopamine neurotransmission in the reward system [44]. Others
suggest that placebo and nocebo effects recruit different neural
circuitry and release distinct substances (e.g., cholecystokinin for
nocebo effects) [62, 63]. A recent meta-analysis also showed
placebo-specific concordance in the ventral striatum and nocebo-
specific concordance in the posterior insula and dorsal ACC [64].
Overall, placebo and nocebo effects may be associated with both
shared and distinct mechanisms/pathways.

HARNESSING PLACEBO AND NOCEBO EFFECTS USING
PSYCHOSOCIAL, PHARMACOLOGICAL, AND
NEUROMODULATION APPROACHES
Psychosocial approaches
Based on the psychological mechanisms introduced above,
modulating expectations, learning, and social interactions are
three major psychosocial approaches to harnessing placebo and
nocebo effects (shown in Fig. 1A). Expectation manipulation can
be easily achieved by altering external characteristics of placebo
treatments, such as brand names (generic vs. branded) and value
information (expensive vs. cheap). Compared with generic tablets
(e.g., generic Ibuprofen), branded ones (e.g., Nurofen) not only
have a greater efficacy but also produce fewer side effects [65].
This phenomenon may be explained by individuals’ perceiving
generic drugs as less effective and of poorer quality [66]. The price
tag of treatment also conveys information about its value or
quality, suggesting a role of price in placebo effects [67, 68]. This
was recently confirmed by a study using two placebo creams
(high vs. low price), showing the higher-priced placebo treatment
led to enhanced pain relief, which was associated with fMRI
responses in the NAc, vmPFC, and ventral tegmental area [69]. The
effect of price on placebo magnitude and brain activity also occurs
in Parkinson’s disease [70]. Interestingly, higher-priced medica-
tions may also lead to an increase in perceived side effects (i.e.,
nocebo effects), suggesting that participants may infer that
expensive medication contains a more potent and effective agent
and consequently produces more side effects [71].
Although classical conditioning can induce significant placebo

and nocebo effects, it is suggested that the combination of
conditioning and verbal suggestion/instruction brings stronger
effects [12]. Interestingly, the chronology of verbal suggestion and
conditioning, as well as their congruence, influence the
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magnitudes of placebo and nocebo effects [72]. Participants may
have stronger placebo analgesia when the verbal suggestion
proceeds rather than follows conditioning, while the order of the
procedures does not affect the magnitude of nocebo
hyperalgesia.
Minimizing nocebo effects is of profound clinical implications.

One intriguing yet thorny issue in nocebo hyperalgesia is that it
seems not subject to extinction once established through classical
conditioning [73, 74]. However, a recent study showed that
nocebo hyperalgesia can be attenuated by classical extinction and

counterconditioning with a larger trial number, where conditioned
aversive cues are later paired with positive stimuli [75]. Interest-
ingly, conditioning-induced nocebo itch can even be reversed by
counterconditioning [76].
Social interaction between healthcare providers and patients

typically occurs in medical treatments. In particular, the doctor-
patient relationship is critical in maximizing treatment beliefs/
expectations and other non-specific treatment effects, and, thus,
enhancing the placebo effects and the total treatment efficacy
[13, 77]. Two early studies demonstrated that a supportive

Fig. 1 Different approaches and potential neural mechanisms to harness placebo effects. A Psychosocial approaches, including valuable
information and enhanced conditioning (i.e., verbal suggestion precedes conditioning), modulate the reward system (e.g., ventromedial
prefrontal cortex [vmPFC], nucleus accumbens [NAc], and ventral tegmental area [VTA]). Trustful doctor–patient relationships rely on the
brain-to-brain coupling in the temporoparietal junction (TPJ), insula, and ventrolateral prefrontal cortex (vlPFC). B Intranasally administered
oxytocin/vasopressin travels to the brain via olfactory and trigeminal nerve fibers and may modulate placebo-related brain activities in the
anterior cingulate cortex (ACC), NAc, hypothalamus, amygdala, hippocampus, and brainstem. C Neuromodulational approaches including
transcranial magnetic stimulation (TMS) and electrical stimulation (tES) target key regions in the prefrontal cortex (e.g., dorsolateral prefrontal
cortex [DLPFC] and orbitofrontal cortex [OFC]) to modulate the reward system and descending pain modulation system (e.g., periaqueductal
gray [PAG] and rostral ventromedial medulla [RVM]) to harness placebo effects.
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doctor–patient relationship is a robust component of the placebo
effect (i.e., boosts patients’ expectations towards the treatment)
and can enhance therapeutic effects in large single-blind
randomized clinical trials [78, 79]. A recent effort has been made
to modulate and study how doctors’ expectations can be
transmitted to patients and affect clinical outcomes [80]. The
study highlights the importance of healthcare providers’ behavior
and cognitive mindsets in affecting clinical interactions.
It is worth noting that while the behaviors of the doctor may

influence the patient’s expectancy/belief, there is no guarantee
that these manipulations would be effective. For instance,
researchers applied a context manipulation model [78] to test if
enhancing the doctor–patient relationship could increase the
expectancy and treatment effect of acupuncture on chronic low
back pain (cLBP). Results showed no significant differences
between the high- and low-context groups in both back pain
severity and expectancy scores [81]. These findings suggest
gaining patients’ trust and enhancing expectancy is a complicated
process, and warmness and empathy may be just two of several
factors that can influence their expectations.

Pharmacological approaches
The pharmacological approaches have gained interest due to their
potential in modulating key psychosocial components of placebo
and nocebo effects (Fig. 1B).
Oxytocin is a peptide hormone and neuropeptide that plays a

role in empathy, trust, and social learning. Recently, studies have
shown oxytocin can promote social cognition and learning
[82, 83], enhance empathy levels [84], and reduce stress and
anxiety [85]. Thus, some researchers hypothesized oxytocin may
enhance the placebo effect. An earlier study found oxytocin can
enhance verbally induced placebo analgesia in males [86].
Nevertheless, several recent studies report insignificant modula-
tory effects of oxytocin on placebo analgesia and nocebo
hyperalgesia [87–89]. Therefore, experimental evidence support-
ing the role of oxytocin for placebo and nocebo effects is mixed,
at least in the field of pain.
Vasopressin is another potential candidate to modulate placebo

effects. The brain distribution of oxytocin receptors overlaps with
those of arginine vasopressin, and studies suggest that vasopressin
can regulate conciliatory behaviors and social communication in
females [90, 91]. A previous study found that vasopressin agonizts
boosted placebo effects in women but had no effect in men [92].
Two aspects of these pharmacological studies on placebo/

nocebo effects are noteworthy. One is that most of them recruited
healthy participants, not patients [93]. As a result, it remains an
open question whether and how these findings can be translated
to clinical application. The other is that they induced placebo or
nocebo effects mainly by verbal instructions. Neurotransmitters
like oxytocin and vasopressin influence the outcome of condition-
ing [94, 95], so it is of interest to investigate whether conditioning-
induced placebo and nocebo effects can be pharmacologically
modulated.

Neuromodulation approaches
The past decade has witnessed a growing interest (or rediscovery,
as the concept of brain stimulation has existed for over one
hundred years) in the modulation of human behavior and
cognition by noninvasive brain stimulation (NIBS). These methods
allow researchers non-invasively alter neural activity/excitability
(enhancing or inhibiting) to affect behaviors [96]. Two NIBS
methods have emerged in both basic and clinical contexts:
transcranial magnetic stimulation (TMS), which sends pulses to
increase cortical excitability due to long-term potentiation or to
inhibit cortical excitability due to long-term depression, and
transcranial electrical stimulation, which passes low-intensity
electrical currents through the cortex and de- or hyperpolarizes
neuronal membrane potentials to alter cortical excitability.

Given the important role of the brain in placebo and nocebo
effects, it is a natural next step to apply NIBS tools to modulate the
placebo effect as well as investigate the mechanism of placebo/
nocebo effects to elucidate the causal role of certain brain regions
(Fig. 1C). For instance, across neuroimaging studies, the most
consistent placebo-related brain responses in the PFC are
observed in the DLPFC, vlPFC, and vmPFC (including the rACC
and pregenual anterior cingulate cortex, and orbitofrontal cortex
[OFC]) [14, 18, 19, 40, 41, 55, 61, 67, 97]. The converging findings in
the PFC bring valuable targets for harnessing placebo and nocebo
effects through directly modulating brain responses in these
precise locations.
In an early study, investigators found that low-frequency

repetitive TMS (rTMS) at the DLPFC (aiming to transiently disrupt
left and right DLPFC function) could block expectation-induced
placebo analgesia as measured by pain threshold and tolerance
increases [98]. The following study investigated the modulation
effect of single-session transcranial direct current stimulation
(tDCS) at the right DLPFC and showed that placebo and nocebo
effects could only be observed in participants who received
anodal tDCS (to enhance neuronal excitability) but not in those
who received cathodal tDCS (to inhibit neuronal excitability) [99].
In a more recent study, we found that multi-session (three
sessions) repeated tDCS at the left OFC and right DLPFC could
boost placebo and blunt nocebo effects, as well as modulate brain
activity and connectivity associated with placebo analgesia and
nocebo hyperalgesia, respectively [97].
These findings together not only demonstrate the feasibility of

harnessing placebo and nocebo effects through changing brain
excitability with NIBS but also suggest how experimentally altered
neural activity causally affects placebo and nocebo effects.
Nevertheless, caution must be exercised when applying NIBS to
modulate specific brain areas or networks, because the NIBS-
induced effects are more complex than their computational
models and these effects are subject to stimulation protocols (e.g.,
current intensity [100], stimulation duration [101]) and individual’s
brain characteristics (e.g., the orientation of the axons in relation
to the current flow [102], baseline brain state [103]).
A noticeable limitation of NIBS is that the targeted areas are

generally limited to cortical regions due to low penetrance [96].
On the other hand, abundant subcortical areas (e.g., the NAc and
PAG) and complicated brain networks are involved in placebo/
nocebo effects. Most of them cannot be directly modulated via
NIBS. Deep brain stimulation can reach subcortical areas but are
undesirable for many patients due to its invasiveness. Two
strategies may be adopted to partially overcome this limitation
of NIBS. One is to target multiple brain regions simultaneously; the
other is to modulate areas that are hubs of placebo-related brain
networks or exhibit strong connectivity with subcortical areas.
Future studies may test the effectiveness of these strategies in the
context of placebo and nocebo effects.

TRANSLATING BASIC RESEARCH FINDINGS INTO CLINICAL
TREATMENT SETTINGS
General principles in clinical practice
Translating basic research findings of placebo and nocebo effects
into clinical treatment settings is a high-stake issue. To maximize
the salubrious placebo effects as well as minimize the detrimental
nocebo effects in clinical care, some generally agreed-upon
guidelines for utilizing placebo and nocebo effects in clinical
practice have been recently suggested [104]. Based on these
guidelines, general principles that health care providers can use to
elicit placebo effects and reduce nocebo effects include:

(a) The modulating expectation is always helpful to induce
placebo effects in medical practice. Healthcare providers
may point out directly that a drug or treatment is effective if
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its efficacy has already been proven. Informally explaining
the mechanisms of treatments and placebo effects may also
be of benefit. Such knowledge promotes trust in the
treatment and boosts positive expectations toward efficacy.

(b) Increasing knowledge mitigates nocebo effects. Misattribu-
tion of accidental experiences or preexisting symptoms to
treatments will amplify nocebo effects [105]. Demystifying
nocebo effects by increasing knowledge is thus a crucial
step to preemptively nullify misattribution. Indeed, recent
studies have shown that informing participants with weekly
headaches about nocebo effects reduced the nocebo side
effects they experienced [106], and providing timing
information minimized nocebo effects because they often
occurred when individuals expected them to occur [107].

(c) Improving the communication style to build a supportive
relationship between patients and physicians triggers
placebo effects [77]. On the other hand, a cold, indifferent,
impatient, or hostile relationship induces nocebo effects
[108]. Nevertheless, enhancing expectancy and gaining
patients’ trust is a complicated process. The supportive
relationship may only work for some individuals. In addition,
“exaggerated” positive information and “over” supportive
relationships should be used with caution to avoid ethical
concerns.

Applying the learning model in clinical treatment
Experimental studies have demonstrated that a conditioning-like
manipulation model can produce greater placebo effects com-
pared to verbal suggestion/instruction alone [109]. In addition, this
model can also enhance the effect of active treatments on
experimental pain [54, 110]. Nevertheless, few studies have
applied the expectancy manipulation model in longitudinal
treatment in patient populations due to the difficulty in
modulating chronic pain intensity compared to experimental
pain. To overcome this challenge, investigators have applied an
expectancy manipulation model using experimental heat pain to
enhance subjects’ expectation of acupuncture analgesia (on heat
pain), and then confirmed that this enhanced expectation
improved the treatment effect of acupuncture on chronic pain
caused by knee osteoarthritis (KOA) [111]. This study demon-
strated the feasibility of applying the expectancy manipulation
model in clinical settings, which may shed light on improving
treatment effects.
Observational learning and operant conditioning can also be

considered when clinicians interact with patients to induce
placebo effects [23, 30]. Arguably, they can be more easily applied
than classical conditioning in clinical treatment, since observa-
tional conditioning involves only indirect information about
treatment effectiveness from other individuals and operant
conditioning requires only appropriate reinforcement like a verbal
reward. A recent clinical trial has proved the role of observational
learning in enhancing placebo analgesia in cLBP patients [112].
However, operant conditioning has only recently been put forth as
a new mechanism of placebo effects [30], and no clinical studies
have empirically examined its ability to produce placebo effects in
patients. Further research is thus in need to test the clinical
applicability of operant learning.

Variability of placebo effects
It has long been acknowledged that placebo effects exhibit large
individual variabilities [113]. Clinical application of placebo effects
has to account for these variabilities. Demographical, psychologi-
cal, and biological factors have all been linked to individual
variabilities in placebo effects.
Sex and race matter for placebo effects. Females and white

populations seem to experience larger placebo effects [114, 115].
Another set of important predictors of placebo effects is

psychological factors, e.g., expectation, trait optimism, desire for
control [116], emotional distress, and maladaptive cognitive
appraisals of pain [117]. In clinical studies, patients susceptible
to a placebo effect can be identified by assessing pretreatment
positive and negative expectations [118, 119], and prior ther-
apeutic experience via conditioning [120]. Brain activity or brain
structures have also been used to predict placebo effects.
Stronger placebo effects have been associated with a more
efficient reward system (e.g., NAc responses to reward cues [121],
gray matter densities of the NAc and PFC [14, 122], regional
homogeneity of NAc [123]) and frontoparietal network functional
connectivity [21]. Importantly, using machine learning and fMRI,
studies were able to identify placebo responders and predict the
magnitude of placebo effects in patients with KOA [124], major
depression [125], and cLBP [81, 126].

Placebo effects in patients and healthy individuals
Patients and healthy individuals differ considerably in many ways.
For example, chronic pain patients typically suffer from anxiety
and depression [127]. More importantly, the neural underpinnings
of placebo effects are impaired in some diseases like chronic back
pain [128] and fibromyalgia [129]. A crucial issue is then whether
findings based on healthy individuals can be generalized to
patients. A meta-analysis has shown that the magnitude of
placebo analgesia in studies with healthy participants was smaller
than in studies with patients, but the difference was not
statistically significant [130]. Recent studies directly comparing
chronic pain patients and healthy controls also found that the
magnitude of placebo analgesia was comparable between healthy
controls and fibromyalgia, osteoarthritis, and chronic orofacial
pain patients [120, 131, 132]. These findings suggest that chronic
pain may not significantly affect patients’ susceptibility to placebo
effects, even though it may impair neural pathways key to placebo
analgesia. One explanation is that these impaired areas and
pathways are not necessary for placebo analgesia, since multiple
distributed neural networks are involved in placebo effects.
However, it still remains an open question whether disease
impairs the ability of psychosocial, pharmacological, and neuro-
modulation approaches to modulate placebo and nocebo effects.
Due to shared psychological and neural mechanisms, it is
reasonable to assume that placebo and nocebo effects can also
be modulated similarly in patients and healthy people. Never-
theless, future research needs to directly test the feasibility of
boosting placebo effects and blunting nocebo effects in patient
populations to harness these effects in clinical settings.

Considerations in clinical application
When applying placebo/nocebo effects, one must be sensitive to
the clinical issues involved. A placebo lies not in the drug or
procedure itself, but in the patient’s own mind (or brain).
Persuading the patients that a placebo treatment works may
involve deception and violation of their autonomy. One arguably
less concerning approach for harnessing placebo/nocebo effects is
to adopt open-label placebo treatments, in which the inertness of
the treatment and the efficacy of placebos are revealed explicitly.
Randomized clinical trials of open-label placebos in different
conditions, including patients with irritable bowel syndrome [133],
cLBP [134], cancer-related fatigue [135], and episodic migraine
[136], have demonstrated the therapeutic efficacy of open-label
placebos. A recent meta-analysis of 13 open-label placebo clinical
trials found a significant overall effect of open-label placebos as
compared to no treatment but also cautioned that current studies
were still immature [137].
One potential issue for open-label placebo treatment is that the

power of the verbal suggestion (informing the participants that
studies have shown placebos can also produce treatment effect)
may fade with wide application of the open-label placebo
treatment, as open-label placebos may tend to be less effective
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than real medication. One solution to this issue is to combine
active treatments with placebos [138]. Exploiting the power of
placebo effects to boost, not replace the efficacy of active
interventions, could induce fewer clinical concerns. Dose-
extending placebos may raise fewer clinical problems than pure
placebos. By interspersing placebos between real medications,
dose-extending placebos not only induce placebo effects, but also
have many practical advantages such as cutting medication
intake, reducing medication dependence, and likely decreasing
financial costs for patients [139]. Since potent treatments are also
used, dose-extending placebos are presumably less clinically
problematic. Combining open-label placebos with dose-extending
placebos (i.e., open-label dose-extending placebos) further
reduces clinical concerns. Admittedly, even this combination of
two clinically less concerning placebos is not perfect. However,
surveys have shown that a fair proportion of health providers
prescribe placebos in real clinical settings [140, 141]. Since placebo
and nocebo effects are almost inevitable, the real question is not
whether clinicians should apply these effects, but how they can
make use of current findings to better apply placebo and nocebo
effects while keeping ethical considerations in mind.

OPEN QUESTIONS AND CONCLUSION
In this review, we surveyed important advances in understanding
behavioral and neural mechanisms of placebo and nocebo effects
and employing psychosocial, pharmacological, and neuromodula-
tion approaches to harness these effects and discussed the
challenges to applying these findings to medical practice. The
mechanistic heterogeneity of placebo and nocebo effects in
different domains is worth noting. Up till now, most placebo and
nocebo studies have come from pain. Nevertheless, general
psychological (e.g., conditioning, expectations) and brain mechan-
isms (e.g., the DLPFC, reward system) identified from pain-related
studies may be not specific and could be shared with placebo
effects across other domains/symptoms [27].
Using psychosocial approaches to modulate placebo and

nocebo effects might be low-cost and easy to do in clinical
applications. However, it is noteworthy that psychosocial
approaches may be dependent on an individual’s different
preferences or personality in gaining expectancy/belief (e.g.,
someone may prefer warm conversations with the doctor, while
others may prefer less conversation), and therefore the modula-
tory effects may vary considerably across individuals. How to build
a trustful doctor–patient relationship in the clinical setting should
be carefully characterized and studied based on different
populations rather than a general style/suggestion.
Although promising, findings concerning the efficacy of pharma-

cological approaches are somewhat mixed [87]. Current efforts
mainly focus on modulating pain-related placebo and nocebo
effects. It is worth testing if oxytocin and vasopressin can modulate
other placebo and nocebo effects. For example, since oxytocin can
promote social trust in humans [142], its role in modulating a trustful
doctor-patient relationship should be tested in future studies.
Ideally, it is desirable to simultaneously enhance placebo and

inhibit nocebo effects by changing brain excitability. As men-
tioned above, placebo and nocebo effects have both shared and
distinct mechanisms. Achieving these two aims at once would
thus be challenging. Indeed, an effective brain target for
simultaneously harnessing these two effects is still inconclusive
and needs experimental validation. However, it is worth trying to
target with NIBS presumably shared brain areas (e.g., the DPMS
and reward system) underlying placebo analgesia and nocebo
hyperalgesia [44].
In summary, placebo and nocebo effects are powerful, pervasive,

and common in cognitive neuroscience and clinical practice.
Moving from native observation to experimental mechanistic
manipulation, and finally utilizing the effects wisely in clinical

practice may lead to the improvement of therapeutic outcomes
and minimization of unintended exacerbation of symptoms.
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