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a b s t r a c t 

Expectation can shape the perception of pain within a fraction of time, but little is known about how perceived 

expectation unfolds over time and modulates pain perception. Here, we combine magnetoencephalography (MEG) 

and machine learning approaches to track the neural dynamics of expectations of pain in healthy participants 

with both sexes. We found that the expectation of pain, as conditioned by facial cues, can be decoded from MEG as 

early as 150 ms and up to 1100 ms after cue onset, but decoding expectation elicited by unconsciously perceived 

cues requires more time and decays faster compared to consciously perceived ones. Also, results from temporal 

generalization suggest that neural dynamics of decoding cue-based expectation were predominately sustained 

during cue presentation but transient after cue presentation. Finally, although decoding expectation elicited 

by consciously perceived cues were based on a series of time-restricted brain regions during cue presentation, 

decoding relied on the medial prefrontal cortex and anterior cingulate cortex after cue presentation for both 

consciously and unconsciously perceived cues. These findings reveal the conscious and unconscious processing 

of expectation during pain anticipation and may shed light on enhancing clinical care by demonstrating the 

impact of expectation cues. 
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. Introduction 

Pain is a highly subjective sensation that can be influenced by a va-

iety of psychological factors ( Wiech et al., 2008 ). One such example

s that our expectations can significantly modulate the perception of

ain ( Atlas and Wager, 2012 ; Fields, 2018 ), and these modulation ef-

ects (e.g., placebo analgesia and nocebo hyperalgesia) have been ro-

ustly observed in both basic and clinical studies ( Finniss et al., 2010 ;

ong et al., 2009 ; Kong et al., 2018 ). In the case of placebo analge-

ia, classical theories invoke conditioning to establish a link between a

ue (e.g., pain killer) and the following pain relief, thus creating pre-

ictive knowledge (i.e., expectation) that modulates future pain-related

esponses to the same cue, even if it is inert ( Kong and Benedetti, 2014 ).

Although the mechanisms of placebo and nocebo are still under in-

estigation, neuroimaging techniques, especially functional magnetic

esonance imaging (fMRI) and positron emission tomography (PET),

ave offered insights into how predictive cues are processed by higher-

rder brain areas ( Atlas et al., 2010 ; Petrovic et al., 2010 ; Tu et al.,

020 ; Wager et al., 2004 ) and then modulate pain and pain-related brain
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esponses ( Freeman et al., 2015 ; Wager and Atlas, 2015 ). These theo-

ies have been recently extended to propose that predictive cues can be

ecognized subliminally and conditioned pain-related responses (e.g.,

lacebo analgesia and nocebo hyperalgesia) can be elicited without con-

cious awareness ( Jensen et al., 2015 , 2012 ), but placebo and nocebo

ffects induced by unconsciously perceived cues may be weaker than

onscious ones ( Egorova et al., 2015 ; Tu et al., 2018 ). 

Knowing how the human brain extracts expectation from predictive

ues is important for understanding and harnessing placebo and nocebo

ffects. However, there are critical gaps of knowledge in this domain.

irst, previous studies using fMRI have had low temporal resolution

nd were not able to track neural dynamics at the level of millisec-

nds ( Wager et al., 2004 ). When and how expectations are extracted,

valuated, and maintained after predictive cue onset are still unknown.

econd, studies suggested that visual percept could be processed in

he brain without conscious awareness ( King et al., 2016 ; Salti et al.,

015 ). Whether expectation elicited by consciously and unconsciously
ital and Harvard Medical School, Charlestown, MA 02129, USA. 
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erceived visual cues during pain anticipation are associated with dis-

inct neural dynamics remains unclear. 

To answer these questions, we leveraged a visual cue conditioning

aradigm with both consciously and unconsciously perceived predictive

acial cues and collected magnetoencephalography (MEG) data during

he experiment. In the conditioning phase, cue-based expectations of

ain were both directly and indirectly conditioned (viewing a model

articipant undergoing direct conditioning rather than receiving pain

hemselves) for all participants (this setup allows us to explore possi-

le effect of conditioning type on time-resolved expectations, since re-

ent studies showed that expectations of pain could be conditioned by

oth self-experience and social observation ( Schenk and Colloca, 2020 ;

u et al., 2018 )). In the test phase, to determine how cue-based expec-

ation of pain unfolds over time, we focused on analyzing the MEG data

rom subjects viewing other conditioned cues, which were supralimi-

ally and subliminally presented, to the onset of identical pain stimuli

i.e., pain anticipatory period). We applied multivariate pattern classi-

cation on MEG sensor measurements to decode levels of cue-based ex-

ectation (i.e., high pain vs. low pain) along with time, and then com-

ared the neural dynamics for decoding expectations elicited by con-

ciously and unconsciously perceived cues. Finally, we examined how

hese neural dynamics mediated expectation of subjective pain intensi-

ies. We hypothesized that (1) participants would report significantly

ifferent levels of pain perception following different cues, even the

ntensity of pain stimuli were identical; (2) decoding consciously and

nconsciously perceived expectations would be associated with distinct

patiotemporal neural patterns; and (3) conditioning types (direct vs in-

irect) would not affect the decoding process. 

. Methods 

.1. Subjects 

Thirty-seven healthy individuals without psychiatric or neurologic

isorders took part in this study. Fourteen subjects were dropped from

tudy; seven due to interference in the MEG scanner, two due to in-

bility to recognize facial cues, four due to inconsistent pain ratings,

nd one due to reported back pain. Two subjects were unable to com-

lete the experiment. The final sample consisted of 21 participants (12

emales; aged 25.0 ± 3.9). The Massachusetts General Hospital Insti-

utional Review Board approved the study, and all subjects provided

ritten informed consent. 

.2. Pain administration 

A PATHWAY contact heat-evoked potential stimulator system

Medoc Advanced Medical Systems, Israel) was used to deliver heat pain

timuli. Stimuli were applied for 2 s each on the medial side of the lower

ight leg. The location of the heat probe was adjusted between applica-

ions to reduce sensitization. Temperatures were calibrated for every

ubject. For the familiarity and calibration phase, we first performed

ne ascending sequence. In the ascending sequence, the temperature

tarted from 38 °C with a step of 1 °C and ended at 50 °C or at the

emperature the subject could tolerate. Pain ratings were measured in

ccordance with Gracely Sensory Scales (0–20) ( Chapman et al., 1985 ;

racely et al., 1978 ). Three temperatures that each subject rated as 5–6

low pain), 10–11 (moderate pain), and 14–15 (high pain) were selected.

fter selecting three temperatures, we then applied 3 random pain se-

uences (three trials for low, moderate, and high pain respectively, a

otal of 9 trials in each sequence) and 3 identical pain sequences (six

rials for low or moderate or high pain in each sequence), to test the

alidity of calibrated temperatures. 

.3. Experimental design 

The experiment consisted of a conditioning phase and a test phase

onducted on the same day ( Fig. 1 A). 
2 
.3.1. Conditioning phase 

Subjects underwent two runs of direct conditioning and two runs

f indirect conditioning in a randomized order. Each run contained 20

rials. Visual cues consisted of forward-facing, emotionally neutral male

aces obtained from the Karolinska Directed Emotional Faces (KDEF) set

 Goeleven et al., 2008 ). Images were displayed with Presentation soft-

are (Version 16.3, www.neurobs.com ), and the assignment of images

o a given condition was counterbalanced across subjects. 

In direct conditioning, subjects were told that they would be pre-

ented with faces and pain ratings on a screen, and each face was paired

ith a pain stimulus (i.e., they were not told that they would receive

igh or low pain stimuli) on their leg. A heat pain stimulus was applied

o the leg 1 s after a cue was presented on the screen. Two cues (i.e.,

ale faces, Fig. 1 A) were presented in a random order, 10 times per cue.

ne cue was presented with a high pain stimulus and the other with a

ow pain stimulus. Subjects rated each stimulus on a 0–10 visual ana-

ogue scale (VAS; 0 being no pain and 10 being the worst pain possible).

wo different pain rating scales were used in the calibration and con-

itioning/test phases (0–20 Gracely scale vs. 0–10 VAS). This aimed to

nsure that subjects focused on their immediate pain experience during

he test phase rather than any recollections of the calibration phase. 

In indirect conditioning, subjects were shown a video of a model

articipant undergoing direct conditioning rather than receiving pain

hemselves. The model appeared in front of a computer with a heat

robe on their leg. Subjects saw the cue (i.e., male faces, Fig. 1 A) that

as presented to the model, the model’s facial reaction in response to

he cue, and the model’s pain rating. The facial pain depictions were

btained from a research assistant in the lab showing a painful or non-

ainful expression without receiving real pain stimuli. The cue, facial

ain expression, and pain rating in one conditioning trial were paired

o link the cue and expectation of pain. Two new cues were presented

n a random order, 10 times per cue. One cue was paired with high pain

nd the other with low pain. The model’s ratings average pain ratings

ere 2.0 ± 0.4 for low pain and 8.1 ± 0.4 for high pain. 

Please refer to Fig. 1 A for the timings of a standard conditioning trial.

n direct conditioning, a cue was presented for 500 ms, and subjects re-

eived heat pain 1000 ms after the cue disappeared. The target temper-

ture was sustained for 2000 ms, and subjects rated their pain intensity

000 ms after the heat stimulus ended. Subjects were allotted 5000 ms

o rate their pain. In indirect conditioning, the model’s initial expres-

ion was shown for 2000 ms. After 4000–7000 ms (pseudorandomized),

ubjects saw a cue for 500 ms. After 1000 ms, during which the model

resumably received a heat pain stimulus, they saw the model’s reaction

painful or not painful) to the stimulus for 2000 ms. Subjects observed

ow the model rated their pain intensity 5000 ms after the pain stimu-

us, and the rating procedure lasted 5000 ms. The timings from cue onset

o pain rating for both direct and indirect conditioning were the same

n order to control for the duration of learning the association between

ue and pain. 

Following the conditioning phase, subjects were presented with an

rray of 9 faces and asked to identify the 4 learned cues. Further, they

ad to indicate whether the cue was direct or indirect and high pain

r low pain. Subjects who correctly identified these 4 cues immediately

roceeded to the test phase (two were not able to identify). The time

ap between the conditioning phase and test phase was around 5 mins.

.3.2. Test phase 

During the test phase, subjects were told that they would be pre-

ented with the four familiar cues and one unfamiliar cue. They were

lso informed that some cues would be fully visible (supraliminal,

00 ms) while others would appear only briefly and would be followed

y a masking image (subliminal, 33 ms cue + 467 ms mask) such that

he cue may be unrecognizable. An identical moderate pain stimulus was

elivered with each cue to test the conditioning effect. The test phase

ook place in three runs, with each run consisting of 60 trials for each

f 10 different cues (5 supraliminal and 5 subliminal). Cues were pre-

http://www.neurobs.com
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Fig. 1. Experimental design and pain-related results. A. This experiment consisted of two phases. In the conditioning phase (~40 mins), direct cues (faces with 

neutral expressions) were accompanied by heat pain stimulation of high or low intensity. Indirect cues (different faces with neutral expressions) were accompanied 

by observing a model experiencing high or low pain, showing both the physical reaction (painful or non-painful) and subjective pain ratings of the model. Each 

subject participated in both direct and indirect conditioning. At the end of the conditioning phase, the subjects were presented with a brief face identification test 

(~1 min). In the test phase (~60 mins), one of five cues (four learned cues from conditioning and one novel, neutral cue) appeared either supraliminally (500 ms) 

or subliminally (33 ms + 467 ms mask). The directly and indirectly conditioned high pain cues were presented with solid red and dashed red boxes, respectively. 

The directly and indirectly conditioned low pain cues were presented with solid blue and dashed blue boxes, respectively. The control cue was presented with a solid 

yellow box. Identical moderate pain stimuli (~2 s) followed all cues. Subjects were instructed to rate each stimulus on a 0–10 numerical rating scale. At the end of 

the test phase, a cue recognition test was presented (~5 mins). B. Pain ratings of identical moderate heat pain stimuli after conditioned predictive cues during the 

test phase. C. Magnitudes of directly and indirectly conditioned placebo analgesia and nocebo hyperalgesia. Errorbars in B and C represent standard error of mean. 
∗ p < 0.05, ∗ ∗ p < 0.01 and ∗ ∗ ∗ p < 0.001. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ented 6 times in each run (18 times total). For each cue, subjects were

rompted to rate their pain sensation in 1/3 of the total trials for that

ue (6 out of 18 trials; to reduce the length of experiment and reduce

atigue of participants and to avoid recollection of rating of the former

rial). We thus collected six pain ratings for each of the 10 cues (supral-

minal and subliminal presentations of direct high and low, indirect high

nd low, and neutral cues) for each subject. Please refer to Fig. 1 A for

he timings of a standard test trial. 

Following the test phase, subjects were presented with cues from

he experiment in addition to novel cues, presented supraliminally and

ubliminally. They were asked whether or not they recognized these

ues to ensure that recognition of the subliminal stimuli was at chance
evel. 

3 
.4. MEG and structural MRI acquisition 

MEG data were recorded during the test phase for each subject. The

EG data were acquired inside a magnetically shielded room using a

hole-head Elekta Neuromag VectorView system (Helsinki, Finland)

omposed of 306 sensors arranged in 102 triplets of two orthogonal

lanar gradiometers and one magnetometer. The data were sampled

t 1000 Hz after 300 Hz anti-aliasing low-pass filtering. T1-weighted,

igh-resolution magnetization prepared rapid acquisition gradient-echo

MPRAGE) structural images were collected on a 3T Siemens Trio whole-

ody MRI scanner (Siemens Medical Systems, Erlangen, Germany) using

 32-channel head coil. 
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Fig. 2. Decoding cue-based expectancy from MEG signals. A. Image sets of four conditioned face cues for conscious and unconscious trials. B. Multivariate pattern 

analyses were performed in a time-resolved manner on MEG data extracted from all sensors. For each time point t , we extracted MEG data for each face cue and 

each trial and performed pairwise cross-validated SVM classification. C. The resulting decoding accuracy values resulted in an 8 × 8 symmetric decoding matrix for 

each time point. HE: high expectation cue; LE: low expectation cue; DC: direct conditioning; IC: indirect conditioning. 
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.5. MEG preprocessing and source analysis 

Maxfilter software (Elekta Neuromag, Helsinki, Finland) was applied

n the acquired MEG data for head movements compensation and de-

oising using spatiotemporal filters ( Taulu and Simola, 2006 ). Brain-

torm software was used to extract epochs from 200 ms before cue on-

et to 1500 ms after cue onset and to preprocess the data. We removed

he baseline mean of each sensor ( − 200 to 0 ms) and lowpass filtered

he data at 100 Hz. Epochs with peak-to-peak magnitude greater than

0,000 fT were excluded from further analyses ( < 1% of epochs per

ubject). For the subsequent multivariate pattern analysis, the data of

ach sensor were divided by the standard deviation of the pre-stimulus

aseline signal of that sensor. 

Source activation maps were computed on subject-

pecific cortical surfaces derived from Freesurfer

 https://surfer.nmr.mgh.harvard.edu/ ). The forward model was

alculated using an overlapping spheres model ( Huang et al., 1999 ).

EG signals were then mapped on the cortex using a dynamic statistical

arametric mapping approach (dSPM) ( Dale et al., 2000 ). 

.6. MEG multivariate pattern analysis 

For each time point in the peri-stimulus MEG signal, from − 200 ms

o 1500 ms (1 ms resolution) with respect to cue onset, we extracted pat-

ern vectors by concatenating the 306 MEG sensor measurements into

06-dimensional vectors, resulting in 18 pattern vectors for each cue.

e then used a linear support vector machine (SVM) classifier (LIBSVM

ibrary) ( Chang and Lin, 2011 ) to classify pairwise between conditions

e.g., 18 trials of direct conditioned, consciously perceived high pain

ues vs. 18 trials of direct conditioned, consciously perceived low pain

ues) with five-fold cross-validation ( Fig. 2 A and B). The pairwise classi-

cation was repeated 100 times with random assignments of trials into

ve folds, and the resulting decoding accuracies were averaged over rep-
4 
titions. The results of the classification (percentage decoding accuracy,

0% chance level) were stored in an 8 × 8 symmetric decoding matrix

each cell in the matrix indicating the decoding accuracy with which the

lassifier distinguished between two face cues) per time point and sub-

ect ( Fig. 2 C). We further partitioned the decoding matrix into segments

or pairs of within consciousness and unconsciousness since direct com-

arisons between consciously and unconsciously perceived cues would

e driven by the effect of the masking image. 

In addition to decoding high and low pain cues, we used the same

emporal decoding approach to classify intra-subject pain levels (high

ain vs. low pain) across trials, despite the fact that subjects received

he same moderate pain stimuli for all trials. This analysis enabled us to

nderstand how expectancy-modulated anticipatory MEG brain activity

an predict subsequent variation of subjective pain perception. Given

hat we only required subjects to rate 1/3 of all trials (i.e., 30 trials for

onsciously and unconsciously perceived cues respectively), the predic-

ion was performed by sorting trials according to subjects’ pain ratings

nd equally dividing them into two classes (i.e., high pain and low pain).

o avoid the identical pain ratings when splitting trials into two groups

i.e., the 15th and nearby trials after sorting) and to increase prediction

ower, we only selected the 10 trials (i.e., top 1/3) with the highest

ain ratings and the 10 trials (i.e., bottom 1/3) with the lowest pain

atings to be split into two groups. We then performed binary classifi-

ation using the anticipatory MEG measurements after consciously and

nconsciously perceived cues, respectively. 

We also generalized the decoding procedure across time by training

he SVM classifier at a given time point t and testing across all other time

oints ( Cichy et al., 2014 ; Pantazis et al., 2018 ). Intuitively, if represen-

ations are stable over time, the classifier should successfully discrimi-

ate signals not only at the trained time t , but also over extended periods

f time that share the same neural representation of expectancy. This

emporal generalization analysis was repeated for every pair of cues,

nd the results were averaged across conditions (e.g., high cue vs. low

https://surfer.nmr.mgh.harvard.edu/
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ue) and subjects, yielding 2-dimensional temporal generalization ma-

rices with the x-axis denoting training time and y-axis denoting testing

ime. 

.7. Identifying spatiotemporal dynamics for decoding 

The time-resolved classification yielded vectors of classification

eights for 306 sensors at each time point for each subject. We

hen transformed these weights into patterns using Haufe’s method

 Haufe et al., 2014 ). To provide an accurate understanding of the spatial

nd temporal origins of the decoding signals, we mapped these sensor-

evel patterns to subject-specific cortical source estimates using dSPM

 Dale et al., 2000 ). We were particularly interested in several time of

nterests (TOIs) based on the results of temporal decoding (see Fig. 4 A

nd B for details): (1) during cue presentation (0–500 ms), we selected

he TOIs as the onset of significance and two peaks in the time course

f decoding accuracy; (2) after cue presentation (500–1000 ms), we se-

ected every 100 ms in the time course of decoding accuracy; and (3) the

ffset of significant in the time course of decoding accuracy. We then

erformed statistical testing at each TOI across subjects to identify spa-

iotemporal clusters with significant contributions in decoding high and

ow pain cues. 

After identifying spatiotemporal clusters with significant contribu-

ion, we extracted the brain response in each cluster and correlated with

he corresponding single-trial perceived pain intensities using Pearson’s

orrelation analysis to investigate their relationship in the pain anticipa-

ion period ( Atlas et al., 2010 ). To minimize the influence of individual

ifferences ( Hu and Iannetti, 2019 ; Tu et al., 2019 ), single-trial pain in-

ensities were normalized within each subject by subtracting their mean

nd dividing by their SD before performing the correlation analysis. The

btained correlation coefficients were Fisher’s z-transformed, and the re-

ulting z values were compared against 0 using a one-sample t- test and

 values were corrected for multiple comparisons using FDR. 

.8. Mediation analysis 

We performed bootstrapped mediation analyses to assess the medi-

tory role of anticipatory brain responses (see Fig. 5 for details) on the

elationship between cue-based expectancy and pain perception, using

he PROCESS macro (version 2.16.3) in SPSS (IBM, version 22.0.0) with

000 bootstrap samples. This analysis identified 95% confidence inter-

als for model components. With categorical values as the independent

ariable (coded as 1, 0, and − 1 for high, neutral, and low cues, respec-

ively) ( Hayes and Preacher, 2014 ) and perceived pain intensities (i.e.,

ndividuals’ pain ratings for high, neutral, and low cues, respectively) as

he outcome, we tested whether brain responses showing significant cor-

elations with pain intensities mediated the relationship between cue-

ased expectancy and pain perception. A mediation was considered sig-

ificant when bootstrapped upper and lower 95% confidence intervals

id not include zero ( Hayes and Preacher, 2014 ). 

.9. Statistical considerations 

For the statistical assessment of behavioral results, we first per-

ormed a three-way repeated-measures analysis of variance (ANOVA)

ompare the subjective pain ratings to identical moderate heat pain

timuli, with factors of cue (high vs. neutral vs. low), conditioning type

direct vs. indirect), and awareness (conscious vs unconscious). When

he main effect was significant, post-hoc paired-sample t -test with Tukey

orrection was applied. We also compared the magnitudes of placebo

nalgesia (i.e., pain ratings following neutral cues minus those follow-

ng low pain cues) and nocebo hyperalgesia (i.e., pain ratings following

igh pain cues minus those following neutral cues) using a three-way

epeated-measures ANOVA, with factors of modulation type (placebo

s. nocebo), conditioning type (direct vs. indirect), and awareness (con-

cious vs. unconscious). 
5 
For the statistical assessment of classification time series and tempo-

al generalization matrices, we performed nonparametric permutation-

ased cluster-size inference ( Maris and Oostenveld, 2007 ). The null hy-

othesis was equal to 50% chance level for decoding results. In all cases,

e could permute the labels (high or low cue) of the MEG data, which

as equivalent to a sign permutation test that randomly multiplied sub-

ect responses by + 1 or − 1. We used 1000 permutations; 0.05 cluster

efining threshold and 0.05 cluster threshold were used for time series,

nd 0.001 cluster defining threshold and 0.05 cluster threshold were

sed for temporal generalization maps (we used a stringent threshold

or temporal generalization since it had more multiple comparisons). 

For the statistical assessment of differences in latencies and peak

ccuracies between decoding consciously and unconsciously perceived

ues (i.e., decoding consciously perceived cues reached significance ear-

ier, had higher accuracies, and maintained significance longer), we per-

ormed 1000 bootstrap tests (with replacement) over 21 subjects and

erformed decoding on bootstrapped samples. The resulting latencies

i.e., the first and last time points above significance; 1000 samples)

nd accuracies were compared using a paired t -test. 

For the identification of spatiotemporal dynamics in the source

pace, we compared classification patterns against zero using a one-

ample t -test across 21 subjects, resulting in a t-value map at each time

oint. The t-value maps were set at a threshold of p < 0.001 uncorrected

nd p < 0.05 false discovery rate (FDR) corrected at the cluster level. 

. Results 

.1. Behavioral and brain responses after pain stimuli 

During the conditioning phase, four different cues were associated

ith a high or low level of directly or indirectly perceived heat pain.

ain ratings between the low and high pain stimuli were significantly

ifferent (t 20 = 33.8, p < 0.001; paired-sample t -test): low pain stimuli

licited an average rating of 1.6 ± 0.5 (mean ± SE) and high pain stimuli

licited an average rating of 7.4 ± 0.7. 

During the test phase ( Fig. 1 B), ANOVA results indicated a signifi-

ant main effect of cue (F 2, 40 = 17.89, p < 0.001, 𝜂2 = 0.25), and non-

ignificant main effects of conditioning type (F 1, 20 = 0.38, p = 0.54,
2 = 0.002) and awareness (F 1, 20 = 0.11, p = 0.74, 𝜂2 = 0.0002) on sub-

ective pain ratings. Post-hoc analysis showed that pain ratings for high

ain cues (3.93 ± 0.38) were significantly higher than pain ratings for

eutral (3.40 ± 0.35; t 20 = 4.2, p < 0.001, Cohen’s d = 0.44) and low

ues (3.19 ± 0.34; t 20 = 6.2, p < 0.001, Cohen’s d = 1.36), while pain

atings for low cue were marginal significantly lower than pain ratings

or neutral cue (t 20 = 2.0, p = 0.05, Cohen’s d = 0.44). 

We also observed a significant effect of interaction between cue and

wareness (F 2, 40 = 10.18, p < 0.001, 𝜂2 = 0.11), demonstrating that ex-

ectancy effects were stronger after consciously perceived cues com-

ared to unconscious perceived ones (i.e., pain ratings after high cues

ere higher, while pain ratings after low cues were lower in trials with

onsciously perceived cues than in trials with unconsciously perceived

ues; high conscious vs. high unconscious: t 20 = 4.6, p < 0.001, Cohen’s

 = 1.0; low conscious vs. low unconscious: t 20 = 4.9, p < 0.001, Cohen’s

 = 1.1). Pairwise comparisons between low and high cues were sig-

ificant in the direct conscious (t 20 = 4.2, p < 0.001, Cohen’s d = 0.92),

ndirect conscious (t 20 = 5.3, p < 0.001, Cohen’s d = 1.16), and direct

nconscious trials (t 20 = 2.3, p = 0.031, Cohen’s d = 0.47), but not in the

ndirect unconscious trials (t 20 = 1.6, p = 0.14, Cohen’s d = 0.31). 

We then compared pain ratings for conditioned cues (high and low)

o neutral cues and found significant placebo analgesia and nocebo hy-

eralgesia in conscious trials (direct placebo: t 20 = 1.9, p = 0.033, Co-

en’s d = 0.42; direct nocebo: t 20 = 4.1, p < 0.001, Cohen’s d = 0.91;

ndirect placebo: t 20 = 3.4, p = 0.001, Cohen’s d = 0.74; indirect no-

ebo: t 20 = 4.3, p < 0.001, Cohen’s d = 0.93). However, we only found

irectly conditioned significant nocebo hyperalgesia in nonconscious

rials (t 20 = 1.9, p = 0.034, Cohen’s d = 0.42). ANOVA results showed
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Fig. 3. Brain responses after consciously and unconsciously perceived visual cues. Three prominent deflections were identified: M120, M170, and M250, with 

peaks around 120, 170, and 250 ms after stimulus onset, respectively. They all showed the largest magnitudes at bilateral temporal regions. Repeated-measures 

ANOVA showed a significant effect of cue on the magnitudes of M120 after unconsciously perceived face cues ( p = 0.04). No significant differences in peak latency 

for any of the three deflections were found in the consciously or unconsciously perceived cues. 
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ignificant main effects of modulation type (F 1, 20 = 7.79, p = 0.011,
2 = 0.06) and awareness (F 1, 20 = 14.1, p < 0.001, 𝜂2 = 0.13), but not

onditioning type (F 1, 20 = 0.38, p = 0.54, 𝜂2 = 0.001) nor any of their

nteractions on the magnitudes of placebo and nocebo effects. Post-hoc

nalyses showed that nocebo effects (0.53 ± 0.18) were significantly

igher than placebo effects (0.21 ± 0.14; t 20 = 1.9, p = 0.011, Cohen’s

 = 0.61), and effects in conscious trials were significantly higher than

onconscious trials (t 20 = 3.8, p = 0.001, Cohen’s d = 0.82). 

The group-level waveforms of the pain-evoked brain responses to

dentical moderate heat pain stimuli at a representative MEG sensor

central somatosensory cortex) following different types of face cues

i.e., high, low, and neutral expectancy) are detailed in the Supplemen-

ary Figure S1. In the present study, we focus on the brain responses and

echanisms during anticipation of pain other than during experience of

ain. 

.2. Brain responses after predictive cues 

We recorded MEG data while participants viewed five face cues ei-

her consciously or unconsciously during the test phase. Fig. 3 shows

he group-level waveforms of the visual evoked brain responses at a rep-

esentative MEG sensor (right temporal lobe) elicited by five different

ace cues. The topographies and magnitudes corresponding to the three

rominent deflections are included in the figure and labeled according

o their approximate peak latencies: M120, M170, and M250. We used a

wo-way repeated-measures ANOVA with factors of cues (high vs. low)

nd conditioning type (direct vs. indirect) to assess the differences in

mplitudes and latencies of these three major peaks for consciously and

nconsciously perceived cues, respectively. Please note that we did not

ompare the consciously perceived cues to the unconsciously perceived

ues to avoid the confounding effects introduced by masking in the sub-

iminal cues. 

We found a significant effect of cue (F 1, 20 = 4.9, p = 0.04) on the

agnitudes of M120 after unconsciously perceived face cues, and we

id not find any significant effects of conditioning type on the three

eflections. Since direct and indirect conditionings had similar effects
6 
n behaviors and brain responses in the present study and our previous

tudies ( Egorova et al., 2015 ; Tu et al., 2018 ), we combined the trials

ith directly and indirectly conditioned face cues and compared the

agnitudes and latencies of the three deflections between low and high

ain cues ( Fig. 3 , lower panel). Although not significant, M170 had a

rend of higher magnitudes after high pain cues for both consciously

 p = 0.07) and unconsciously ( p = 0.08) perceived trials. 

.3. Time course of decoding high and low pain cues 

To determine the time course of expectancy processing between cue

nset and pain stimulus onset, we performed a time-resolved multivari-

te pattern analysis on the MEG signals recorded while subjects per-

eived supraliminal and subliminal face cues. Figs. 4 A and B show the

ime courses of neural decoding accuracy for consciously and uncon-

ciously perceived face cues with wide band (0 – 100 Hz) MEG data

rom all sensors. The time course of the decoding of high and low pain

ues was obtained by averaging the time courses of the four between-

xpectation pairs in the consciously perceived and unconsciously per-

eived trials respectively (i.e., direct high vs. direct low, direct high vs.

ndirect low, indirect high vs. direct low, indirect high vs. indirect low;

ee asterisks in the figure). Consciously perceived cues (high vs. low)

ould be discriminated in a cluster that began at 148 ms (decoding first

eached significance), reached a peak at 249 ms (70.0% mean decod-

ng accuracy), and remained significantly above chance until 1095 ms

fter cue onset (cluster-corrected sign permutation test; cluster-defining

hreshold p < 0.05, corrected significance level p < 0.05). 

Unconsciously perceived cues could be discriminated in a cluster that

egan at 151 ms (decoding first reached significance), reached a peak

t 283 ms (66.7% mean decoding accuracy), and remained significantly

bove chance until 1041 ms after cue onset (cluster-corrected sign per-

utation test; cluster-defining threshold p < 0.05, corrected significance

evel p < 0.05). Direct comparisons of two time courses showed that de-

oding consciously perceived cues (1) reached significance earlier (con-

ciously perceived cues: 95% confidence interval [CI], 146 to 150 ms;

nconsciously perceived cues: 95% CI, 150 to 157 ms; p < 0.001, boot-
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Fig. 4. Decoding consciously and unconsciously perceived high and low pain cues. A and B: Time course of decoding high and low pain cues from the average 

of four between-expectation pairs (as indicated by an asterisk). Shading and dashed lines indicate significant time clusters (cluster-corrected sign permutation test, 

cluster-defining threshold p < 0.05, corrected significance level p < 0.05). The red line marks cue offset ( t = 500 ms). Please note that we were not able to perform 

decoding across conscious and unconscious cues since the effect would be driven by the masking image. C and D: Temporal generalization of decoding high and low 

pain cues. The black contour indicates significant decoding area (cluster-corrected sign permutation test, cluster-defining threshold p < 0.001, corrected significance 

level p < 0.05). The white dashed line and gray solid line mark the cue onset and offset times, respectively. E and F: Spatiotemporal regions in cortical sources with 

significant contribution in decoding high and low pain cues ( p < 0.001 uncorrected and p < 0.05 FDR corrected). Brain responses that were greater after a low cue 

than a high cue are shown in blue, while those that were greater after a high cue than a low cue are shown in red. V1: primary visual cortex, ITG: inferior temporal 

gyrus, FFA: fusiform area, PCUN: precuneus, LG: lingual gyrus, ParaCL: paracentral lobule, MCC: middle cingulate cortex, THA: thalamus, dMFPC: dorsal medial 

prefrontal cortex, dACC: dorsal anterior cingulate cortex, rTPJ: right temporoparietal junction, MTG: middle temporal gyrus, vMPFC: ventromedial prefrontal cortex. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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trap testing); (2) was around 2% higher in peak decoding accuracy ( p <

.001, paired-sample t-test); (3) had significantly higher decoding accu-

acy between 205 ms and 261 ms (cluster-defining threshold p < 0.05,

orrected significance level p < 0.05); and (4) maintained significance

or around 50 ms longer (consciously perceived cues: 95% CI, 1093 to

097 ms; unconsciously perceived cues: 95% CI, 1039 to 1044 ms; p <

.001, bootstrap testing). 

We also performed similar analyses using MEG data from different

requency bands and observed that the delta band (1 - 3 Hz) and theta

and (4 - 7 Hz) played a major role in decoding high and low pain cues

Supplementary Fig. S2). This finding is compatible with previous stud-

es indicating that percepts tend to be locked to a theta or high delta

hythm ( Melloni et al., 2007 ; Nakatani et al., 2014 ; Sitt et al., 2014 ).

t is possible that the MEG decoding reflects viewing different faces in-

ependent of the conditioned expectancy. However, this account seems

nlikely here since (1) the significance in decoding face perception can

each significance as fast as about 50 ms ( Dobs et al., 2019 ), and (2) the

ace cues with the same expectation level (e.g., direct high vs. indirect

igh) could not be distinguished by the MEG data (Supplementary Fig.

3). 

To explore the possible effect of conditioning type on time-resolved

ecoding, we demonstrated the time courses of decoding (1) direct high

s. direct low and (2) indirect high vs. indirect low for consciously and

nconsciously perceived cues, respectively (Supplementary Fig. S4). Re-

ults showed that the method of conditioning did not significantly af-

ect decoding performance (i.e., time windows with decoding signifi-

ance, decoding accuracies) for both conscious and unconscious trials.

ogether with our previous study, which showed that direct and indirect

onditioning had both shared and distinct modulatory effects on brain

etworks before and after conditioning ( Tu et al., 2018 ), we believe that

nce expectations have been learned and stored through conditioning,

he resolving process may be similar for direct and indirectly perceived

xpectations. 

In addition, we also tested the time-resolved decoding between con-

itioned cues and neutral cue (Supplementary Figure S4). For con-

ciously perceived cues, the decoding between high and neutral cues

as not significantly different than that between low and neutral cues.

owever, the decoding accuracies were significantly higher when dis-

riminating unconsciously perceived high and neutral cues than when

iscriminating unconsciously perceived low and neutral cues. This find-

ng is consistent with behavioral placebo/nocebo effects, showing that

he discrimination of unconsciously perceived high and low cues may

e driven by the difference of high and neutral cues. 

.4. Temporal generalization of decoding high and low pain cues 

To test how persistent the neural responses are in distinguishing

ace cues, and thereby to shed light on the temporal organization of

xpectancy-processing stages ( King and Dehaene, 2014 ), we performed

 temporal generalization analysis ( Cichy et al., 2014 ; Pantazis et al.,

018 ). Fig. 4 C and D show the 2-dimensional decoding matrices with

he x-axis indexed by training time and the y-axis indexed by testing

ime for consciously and unconsciously perceived cues, respectively. 

Overall, the classifier generalized best to neighboring time points

nd performed poorly for distant time points. This is illustrated by the

ighest decoding accuracy along the diagonal and the drop in accuracy

way from the diagonal in Fig. 4 C and D. We found two main stages for

ecoding consciously perceived cues ( Fig. 4 C). First, the significance

ap (cluster-corrected sign permutation test, cluster-defining thresh-

ld p < 0.001, corrected significance level p < 0.05) formed a square

attern, which indicates a sustained neural activity for decoding, from

150 ms to the offset of cue presentation at 500 ms, and extended to

600 ms. Second, the significance map switched to a diagonal pattern

ith a lack of generalization, which suggests transient neural activities

nd continuous processing of expectancy after cue presentation, from

600 to ~1100 ms. In contrast, the significance map of decoding uncon-
8 
ciously cues ( Fig. 4 D) showed an early diagonal pattern (from 160 ms

o 250 ms), then broadened considerably to a sustained pattern (from

50 ms to 600 ms), and finally switched back to a diagonal pattern (from

00 ms to 1000 ms). The temporal generalization results for different

requency bands are provided in Supplementary Fig. S6. 

Taken together, decoding consciously and unconsciously perceived

ow and high pain cues had both shared and distinct neutral dynamics.

he neural patterns related to decoding consciously perceived cues were

redominately sustained and generalized well during cue presentation

ut lacked generalization after the cue. In contrast, the patterns related

o decoding unconsciously perceived expectancy changed rapidly during

he early processing of a face cue and showed a shorter sustained period

f being above chance level after the cue. 

.5. Spatiotemporal patterns of decoding high and low pain cues 

Fig. 4 E shows spatiotemporal patterns that significantly contributed

o the decoding of consciously perceived high and low pain cues. Dur-

ng cue presentation, we selected three key time points based on the

ime course of decoding accuracy in Fig. 4 A: the onset of significance

t 1c = 148 ms) and two peaks (t 2c = 249 and t 3c = 385 ms). We ob-

erved multiple significant clusters (for which the brain responses were

arger after a low cue than a high cue; shown in blue in Fig. 4 E) during

arly visual processing (t 1c and t 2c ), including the primary visual cor-

ex (i.e., calcarine sulcus and cuneus), inferior temporal gyrus, fusiform

yrus, precuneus, and lingual gyrus. The significant clusters were found

n the primary visual cortex as well as the thalamus, paracentral lobule

ParaCL), and middle cingulate cortex in the late stage (t 3c ). After cue

resentation (600 – 1000 ms), we observed a consistent distribution of

ignificant patterns (for which the brain responses were larger after a

igh cue than after a low cue; shown in red in Fig. 4 E) in the dorsal me-

ial prefrontal cortex (dMPFC). This pattern was also observed in the

ast time point when the decoding was significant (t 4c = 1095 ms), with

nother significant cluster with positive responses in the dorsal anterior

ingulate cortex (dACC). 

Fig. 4 F shows the spatiotemporal patterns for decoding uncon-

ciously perceived high and low pain cues. During cue presentation, we

gain selected three time points according to Fig. 4 B (t 1u = 151 ms,

 2u = 283 ms, t 3u = 434 ms). We found similar patterns as in the case of

onsciously perceived trials in the primary visual cortex and precuneus

n the early stage (t 1u and t 2u ) and ParaCL in the late stage (t 3u ), as well

s distinct clusters in the right temporoparietal junction (rTPJ) and mid-

le temporal gyrus (MTG) at t 2u . Interestingly, we also found significant

ontributions that were larger after a high cue than after a low cue from

he dMPFC after unconscious cue presentation and from the dACC at the

ast time point with significance in decoding (t 4u = 1041 ms). 

.6. Brain responses mediate cue-based expectancy of pain 

To associate the expectancy-modulated brain responses with pain

erception, we correlated the spatiotemporal neural activities identi-

ed in Fig. 4 E and F with corresponding self-reported pain intensi-

ies at single-trial level for each subject. After consciously perceived

ues ( Fig. 5 A), we only found that brain responses in the dACC at t 4c 

1095 ms) were significantly positively correlated with pain intensities

 r = 0.26 ± 0.19, mean ± SD; p < 0.001), indicating that a stronger brain

esponse in the dACC during the pain anticipation period was associated

ith a higher perceived pain intensity during the pain experience pe-

iod. To assess the mediatory role of these spatiotemporal dynamics on

he relationship between cue and pain perception, we performed a boot-

trapped mediation analysis and found that the dACC at t 4c significantly

ediated cue-based expectancy of pain intensities (path a = 0.24, p <

.05; path b = 0.40, p < 0.01; direct effect = 0.58, p < 0.001; indirect

ffect = 0.09, 95% CI: 0.0005 – 0.2354; Fig. 5 B). This result suggests

hat individuals who had larger cue effects on the dACC also had larger

ue effects on pain. 
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Fig. 5. Associations between spatiotemporal dynamics and pain. A. After consciously perceived cues, brain responses in the dorsal anterior cingulate cortex 

(dACC) at 1095 ms were positively correlated with pain intensities (normalized across subjects). Each colored line indicates an individual subject. B. At single-subject 

level, consciously perceived cue-based expectancy on pain intensities was mediated by brain responses in the dACC at 1095 ms. ∗ : p < 0.05, ∗ ∗ : p < 0.01, ∗ ∗ ∗ : p < 0.001. 

C. After unconsciously perceived cues, brain responses in the dorsal anterior cingulate cortex (dACC) at 1041 ms were positively correlated with pain intensities 

(normalized across subjects). Each colored line indicates an individual subject. D and E. Predicting pain levels (high vs. low) using anticipatory MEG. Shading and 

dashed lines indicate significant prediction cluster (cluster-corrected sign permutation test, cluster-defining threshold p < 0.05, corrected significance level p < 0.05). 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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After unconsciously perceived cues ( Fig. 5 C), we also found sim-

lar results, i.e., we only found that brain responses at the dACC

t t 4u (1037 ms) were positively correlated with pain intensities

 r = 0.14 ± 0.23, p = 0.01). We did not perform mediation analysis

ince the total effect between unconsciously perceived cues and pain

ntensities was not significant. 

As shown in Fig. 5 D and E, the pain levels could be predicted after

170 ms for both consciously and unconsciously perceived cues and

aintained predictability prior to the pain stimulus (up to 1476 ms)

or the consciously perceived cues (cluster-corrected sign permutation

est, cluster-defining threshold p < 0.05, corrected significance level p

 0.05) but not for the unconsciously perceived cues (up to 1063 ms). 

. Discussion 

In this study, we combined a visual conditioning paradigm and MEG

o investigate how expectations of pain elicited by consciously and un-

onsciously perceived cues unfold over time. First, we found that high

nd low pain cues could be accurately decoded from MEG, whether

r not the visual cue was perceived with consciousness but differed

n time. Second, neural dynamics associated with decoding consciously

erceived cues were predominately sustained during cue presentation

ut transient after cue presentation. In contrast, decoding unconsciously
9 
erceived cues had rapidly changing patterns of neural activity during

he early processing of cues but later followed similar generalization

atterns as those in the consciously perceived cues. Third, source local-

zation traced brain regions underlying the decoding of high and low

ain cues. While decoding consciously perceived cues benefited from a

eries of additional time-restricted brain regions during cue presenta-

ion, the decoding relied on the dMPFC and dACC after cue presenta-

ion for both consciously and unconsciously perceived cues. Finally, the

ithin-subject conditioned pain-related responses could be predicted by

he anticipatory MEG after 170 ms of cue onset and maintained pre-

ictability prior to the pain stimulus for the consciously perceived trials

nly. 

.1. Cue-based expectation modulates pain perception 

Using a conditioning model and cue-based manipulations of stimu-

us expectancy, previous studies have revealed that short-term expecta-

ions that vary as a function of cue could be conditioned by both self-

xperience ( Atlas et al., 2010 ; Shih et al., 2019 ; Tu et al., 2020 ) and

ocial observation ( Colloca and Benedetti, 2009 ; Hunter et al., 2014 ;

chenk and Colloca, 2020 ; Tu et al., 2018 ). These expectations have

trong effects on pain perception and pain-evoked responses. Consistent

ith these studies, our results showed that cue-based expectancy modu-
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n  
ated perceived intensity to pain. In addition, as supported by previous

tudies ( Jensen et al., 2015 , 2012 ), we found that perceived pain intensi-

ies following unconsciously perceived high pain cues were significantly

igher than those following low pain cues ( p = 0.03). These findings

ould thereby translate the investigation of unconscious effects to the

linical realm by suggesting that health-related responses can be trig-

ered by cues that are not consciously perceived in a variety of medical

roblems (e.g., pain, asthma, depression, and irritable bowel syndrome)

 Kaptchuk et al., 2008 ; Moncrieff and Kirsch, 2005 ; Wechsler et al.,

011 ). It is worth mentioning that we were not able to verify whether

xpectations were being processed consciously or unconsciously. In case

f over-interpretation, we termed our findings as expectations elicited

y consciously and unconsciously perceived cues. 

Although behavioral results suggest that both consciously and un-

onsciously perceived cues can modulate subsequent pain percep-

ion, the underlying neural mechanisms remain poorly understood.

revious neuroimaging studies have focused on investigating the

xpectancy-modulated brain responses during pain ( Atlas et al., 2010 ;

reeman et al., 2015 ; Wager et al., 2007 ). One study by Wager and

olleagues provided evidence that the prefrontal cortices (e.g., dor-

al medial prefrontal cortex, orbitofrontal cortex) have been involved

n the processing of conditioned expectancy during pain anticipation

 Wager et al., 2004 ). A later study showed that cue-evoked anticipatory

ctivity in the medial orbitofrontal cortex and ventral striatum medi-

ted cue effects on pain-evoked brain responses ( Atlas et al., 2010 ). Our

ork goes beyond previous findings in two important respects. First,

e provided direct evidence of how cue-based expectancy resolves over

ime. Second, we showed distinct spatiotemporal dynamics for expecta-

ions elicited by consciously and unconsciously perceived cues. In the

ollowing, we will discuss these in more detail. 

.2. Decoding face cue-based expectancy over time 

While a few prior studies have investigated the time course of face

erception using MEG and machine learning techniques ( Cichy et al.,

014 ; Dobs et al., 2019 ; Vida et al., 2017 ), they have mainly focused

n the decoding of different facial dimensions (e.g., identity, age, gen-

er). Our study, for the first time, extended brain decoding to the in-

ormation (i.e., expectancy) encoded in face cues. Decoding expectation

equires additional brain resources and is inevitably slower than decod-

ng facial dimensions. For example, one recent study showed that indi-

idual faces could be discriminated by visual representations as early as

50 ms, and while different facial dimensions follow coarse-to-fine pro-

essing ( Besson et al., 2017 ), they were significantly decoded no later

han 100 ms after stimulus onset ( Dobs et al., 2019 ). Therefore, our re-

ults suggest that face cue-based expectancy could have been decoded

~150 ms) after the basic facial dimensions were identified. On the other

and, our decoding remained significantly above chance until ~1100

fter cue onset. Although previous studies have shown that brain sig-

als prior to pain stimuli would modulate subsequent pain perception

 Tu et al., 2016 ), we found that the expectancy was not decodable within

100 –, 1500 ms after cue onset (i.e., − 400 – 0 ms before pain stimulus

nset). This may be due to the fact that, in this time window, expectancy

ould not be detected by sensor-level MEG or stored as another format

e.g., memory) in the brain. 

The temporal generalization matrices, appearing as a short diago-

al pattern at the initial decoding stage (~150 – 250 ms), and our

ource analyses suggest that a fast sequence of neural responses propa-

ated from the primary visual cortex to visual association regions. This

s similar to the results of a number of previous studies ( Cichy et al.,

014 ; King and Dehaene, 2014 ; Salti et al., 2015 ). The matrices then

roadened considerably to a squared pattern during the cue presenta-

ion, indicating sustained neural activity in parietal and sensorimotor

reas that are generalized well for decoding ( King and Dehaene, 2014 ).

ollowing the offset of the cue, the temporal generalization matrices

witched back to a diagonal pattern. This suggests a sequence of neu-
10 
al activities reflecting the hierarchical processing and evaluation of

xpectancy ( King and Dehaene, 2014 ). In this stage, the neural activ-

ty finally reached the frontal cortices (primarily the dMPFC) and pre-

ared the ‘brain state’ for the upcoming pain stimulus ( Boly et al., 2007 ;

uzsaki, 2006 ; Tu et al., 2016 ). 

.3. Neural dynamics for expectations elicited by consciously and 

nconsciously perceived cues 

The human brain can process sensory information before it reaches

onscious awareness ( Dehaene and Changeux, 2011 ; Pessiglione et al.,

008 , 2007 ). Therefore, conditioned expectancy elicited by the

ubliminally-presented cues can mediate unconscious effects on pain

erception. Our previous study using fMRI revealed that positive ex-

ectancy of pain was associated with increased activation of the OFC,

hile negative expectancy of pain was associated with increased acti-

ation of the thalamus, amygdala, and hippocampus during the experi-

nce of pain ( Jensen et al., 2015 ). The present study, notably, presented

oth distinct and shared neural dynamics at the milliseconds level for

he processing of expectations elicited by consciously and unconsciously

erceived cues during pain anticipation. 

First, we noticed that decoding unconsciously perceived high and

ow pain cues reached significance more slowly, had lower decoding

ccuracy, and decayed faster than decoding consciously perceived cues.

his finding is consistent with previous studies showing that both de-

oding and behavioral performance are typically higher for conscious

ercept given the depth of processing ( Dehaene and Changeux, 2011 ;

ing et al., 2016 ; Lau and Passingham, 2006 ; Salti et al., 2015 ), and sug-

ests that the human brain may need more time to extract expectancy

rom unconsciously perceived cues, may have weaker effect for the dis-

rimination of high and low pain expectations, and shorter time to main-

ain the information. 

Second, we found that different neural processes may follow con-

ciously and unconsciously perceived cues, especially during the pre-

entation of the stimuli. Similar to the findings in Salti et al., 2015 ,

lthough the processing of cue-based expectation followed a hierarchi-

al network – that is, neural dynamics moved from the primary visual

ortex to higher visual regions and finally reached the parietal cortices

uring cue onset – we found that the processing of consciously perceived

ues recruited additional brain regions (e.g., fusiform, thalamus, mid-

le cingulate cortex), each restricted in time. Given that conscious per-

eption produced more extensive and structured brain activity for pro-

essing expectation, it may explain why conscious effects were stronger

han unconscious effects for both decoding performance and behavior

esponses. 

Third, after cue presentation, we found that the processing of con-

ciously and unconsciously perceived cues may follow a similar pattern

f neural dynamics in the dMFPC. The dMFPC is an important node

n the neural circuit which subserves the perception of negative emo-

ional cues and the arousal components of feeling negative emotions

 Kober et al., 2008 ). Although the spatiotemporal patterns of the de-

oding activities were consistently observed in dMPFC after 600 ms,

he expectation were hierarchically but not sustainably processed (as

eflected by the lack of temporal generalization). Neural dynamics fi-

ally reached the dACC to mediate the conscious expectancy effects on

ubsequent pain perception, which is compatible with a previous fMRI

tudy showing that the dACC is a mediator of predictive cue effects on

erceived pain ( Atlas et al., 2010 ). Although we did not find significant

ediation for unconscious effects, which may be due to the fact that the

otal unconscious effect was not significant, neural activity in the dACC

as also correlated with perceived pain. In addition, these results sug-

est that expectations could modulate neural dynamics in the salience

etwork (e.g., dACC) and the default mode network (e.g., dMPFC), and

onsequently modulate pain perception. The association between expec-

ation fluctuation and pain variability may also be encoded in the dy-

amic pain connectome which may reflect pain variability encoded in
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he neural dynamics of brain networks including the salience network,

efault mode network, and antinociceptive network ( Bosma et al., 2018 ;

im et al., 2020 ; Kucyi and Davis, 2015 ). 

.4. Limitation and future direction 

First, the heat pain stimulator produced large artifacts that degraded

he quality of the MEG data after pain stimuli. Future studies using other

timulators (e.g., laser, electric) will be useful in uncovering causal rela-

ionships between expectation, neural dynamics, and pain. Second, we

sed an SVM classifier to discriminate low and high pain cue conditions.

he cues were associated with expectations towards different levels of

ain, but we could not completely rule out the possibility of other fac-

ors (e.g., emotion) contributing to the discrimination. Third, we did

ot record expectation scores during the experiment and therefore we

ere not able to track trial-by-trial fluctuations of expectation of pain

nd directly associate expectation scores with neural dynamics. Future

tudy will include expectation assessment during pain expectation to in-

estigate the dynamic nature of expectations. Fourth, although we were

ble to statistically compare the time courses of decoding accuracies,

ue to the design of our experiment (using the masking image to induce

ubliminally perceived expectation), we were not able to perform de-

oding across conscious and unconscious cues since the effect would be

riven by the masking image and thus were not able to directly assess

he differences of spatiotemporal profiles between conscious and un-

onscious cues. This limited us to quantitatively assess the differences

f consciously and unconsciously decoding processes. 

. Conclusion 

The present study provides insight into how expectations of pain

licited by consciously and unconsciously perceived vidual cues unfold

ver time. Understanding the temporal infrastructure of conscious and

nconscious processes in placebo and nocebo effects may enhance clini-

al care by demonstrating the impact of expectation cues conveyed dur-

ng therapy. 
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