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Abstract
Accumulating evidence has shown that complicated brain systems are involved in the development andmaintenance of chronic low
back pain (cLBP), but the association between brain functional changes and clinical outcomes remains unclear. Here, we used
resting-state functional magnetic resonance imaging (fMRI) and multivariate pattern analysis to identify abnormal functional
connectivity (FC) between the default mode, sensorimotor, salience, and central executive brain networks in cLBP and tested
whether abnormal FCs are related to pain and comorbid symptoms. Fifty cLBP patients and 44 matched healthy controls (HCs)
underwent an fMRI scan, from which brain networks were identified by independent component analysis. Multivariate pattern
analysis, graph theory approaches, and correlation analyses were applied to find abnormal FCs that were associated with clinical
symptoms. Findings were validated on a second cohort of 30 cLBP patients and 30 matched HCs. Results showed that the medial
prefrontal cortex/rostral anterior cingulate cortex had abnormal FCs with brain regions within the default mode network and with
other brain networks in cLBP patients. These altered FCs were also correlated with pain duration, pain severity, and pain
interference. Finally, we found that resting-state FC could discriminate cLBP patients fromHCswith 91% accuracy in the first cohort
and 78% accuracy in the validation cohort. Our findings suggest that the medial prefrontal cortex/rostral anterior cingulate cortex
may be an important hub for linking the default mode network with the other 3 networks in cLBP patients. Elucidating the altered FCs
and their association with clinical outcomes will enhance our understanding of the pathophysiology of cLBP and may facilitate the
development of pain management approaches.
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1. Introduction

Chronic low back pain (cLBP) is one of the most common reasons
for physician visits in the United States26 and the leading cause of
disability globally.63 Current treatments for cLBP are often un-
satisfactory. Few new nonopioid and nonaddictive painmedications

have been developed in over 5 decades.41 This is at least partially
due to the limited understanding of the underlying mechanisms of

development and maintenance of cLBP.
Neuroimaging research has demonstrated definitive involvement

of the central nervous system in the development,maintenance, and

experience of chronic pain.42 The brain of chronic pain patients is

continuously processing spontaneous background pain by in-

tegrating information between multiple brain regions related to

sensory, cognitive, and emotional functions.56 Resting-state func-

tional magnetic resonance imaging (fMRI) provides a useful frame-

work for investigating the neural mechanisms associated with

chronic pain by comparing brain activities and networks between

patients and healthy controls (HCs). For example, the default mode

network (DMN), thought to be involved in higher-order functions and

monitoring the internal environment for salient events, has consis-

tently been found tobedisrupted in cLBP.4,9,40 The saliencenetwork

(SN), which monitors changes in sensory input and coordinates

brain activity to facilitate a behavioral response, has been shown to

be abnormal in cLBP.12,27 Also, abnormal connectivity within the

central executive network (CEN), which is involved in cognitive

control of behavior,23,44 and the sensorimotor network (SMN), which

processes sensory information,22,33 has been reported in cLBP and

other chronic pain conditions.
Although previous studies have investigated abnormal resting-

state networks in chronic pain conditions, several questions
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remain unanswered. For instance, many studies focused on only
one network or used a predefined seed to study seed-to-voxel
connectivity. However, chronic pain may be associated with
alteration of multiple brain networks that comprise the pain
connectome, including the ascending and descending modula-
tion pathways (eg, periaqueductal gray, thalamus), SN, CEN, and
DMN.27,35,36 The pain connectome emphasizes the integration of
cognitive, affective, and sensorimotor aspects of pain, but how
these networks interact with each other remains poorly un-
derstood. Also, few studies have included an independent
dataset to validate their findings.

In this study, resting-state functional connectivity (rsFC) within
and across networks involving pain modulation and processing
was used to test the hypotheses that cLBP patients have
abnormal brain connectivity across multiple brain networks and
abnormal rsFCs in the pain connectome are correlated with
clinical symptoms of cLBP. Fifty cLBP patients and 44 matched
HCs underwent anMRI scan.We selected 4 networks (DMN, SN,
CEN, and SMN) using independent component analysis (ICA). A
multivariate pattern analysis (MVPA) was applied to investigate
and identify rsFCs that showed abnormalities and were able to
discriminate cLBP patients from HCs. Given the complex
symptoms of cLBP, we related the abnormal rsFCs in cLBP with
comprehensive clinical scores, including pain intensity and
disorder-related characteristics (duration, pain severity), as well
as comorbid physical, mental, and social symptoms. In addition,
we tested the validity of the findings using an independent dataset
consisting of 30 cLBP patients and 30 HCs.

2. Materials and methods

2.1. Participants

This study included 50 patients diagnosedwith cLBPwith a duration
of at least 6 months confirmed by a clinical evaluation and 44
matchedHCs.Wealso includedan independent dataset of 30 cLBP
patients and 30 HCs for validation. All patients met the same
inclusion criteria and were without other chronic pain comorbidities.
Details of the inclusion criteria and medication usage for all
participants can be found in supplementary materials (available at
http://links.lww.com/PAIN/A748). The Institutional Review Board
approved the studies, and all experiments were performed in
accordance with the guidelines set forth by the Institutional Review
Board for ethics and protection of human subjects.

2.2. Clinical assessments and medication

The low back pain severity assessment was used as the
primary clinical measure in this study. It is a well-accepted
assessment for chronic pain with adequate validity and
excellent reliability.52,69 It measures how bothersome
a patient’s low back pain has been during the past week on
a visual analogue scale (0-10) from “not at all bothersome” to
“extremely bothersome.” Patients’ pain intensity before the
MRI scan was also measured with a 0 to 100 visual analogue
scale from “no pain” to “worst pain imaginable.”

We also used the Patient Reported Outcomes Measurement
Information System (PROMIS-29),16,17 which is a system of
reliable, flexible, and responsive assessment tools to assess
physical, mental, and social health for cLBP patients. Seven
items, including pain interference, physical health, social
disability, sleep disturbance, fatigue, depression, and anxiety,
were tested in PROMIS and used to evaluate how chronic pain
diminished patients’ quality of life. In addition to PROMIS,

patients’ depression symptoms were assessed with the Beck
Depression Inventory (BDI).

All included patients did not use prescription opioids greater
than 60 mg of morphine equivalents per day or steroids for pain,
and theywere allowed to continue their existingmedication. Six of
50 patients took opioid analgesics in the first cohort. Four of 30
patients took opioid analgesics in the second cohort. Details of
medication information can be found in supplementary materials
(available at http://links.lww.com/PAIN/A748).

2.3. MRI acquisition

All functional MRI data were acquired using a 32-channel radio
frequency head coil in a 3-T Siemens scanner at the Martinos
Center for Biomedical Imaging. T2-weighted functional images
encompassing the whole brain were acquired with the gradient-
echo EPI sequence (echo time: 30 milliseconds, repetition time:
3000milliseconds, flip angle: 90˚, slice thickness: 3mm, interslice
gap: 0.88 mm, and 44 slices). During the 6-minute resting-state
fMRI scan, subjects were asked to keep their eyes open and blink
normally. High-resolution brain structural images were also
acquired with a T1-weighted 3-dimensional multi-echo
magnetization-prepared rapid gradient-echo sequence (repeti-
tion time: 2200 milliseconds, echo time: 1.54 milliseconds, slice
thickness 1mm, flip angle: 7˚, and 176 sagittal slices covering the
whole brain).

2.4. fMRI preprocessing

The fMRI data were preprocessed using SPM12 (Wellcome Trust
Centre for Neuroimaging, London, United Kingdom). The first 5
volumes were discarded for signal equilibration. Images were
slice-timing corrected and realigned. The resulting images were
normalized to the Montreal Neurological Institute space7 and
spatially smoothed using a Gaussian kernel of 5 mm full width at
half maximum.

To minimize the effect of head motion on the estimation of
functional connectivity, we followed a strategy suggested by
a recent benchmark study21 of combing 6 motion estimates and
2 physiological time series (mean signal in white matter and mean
signal in cerebral spinal fluid) as nuisance parameters and
regressing them out from the whole-brain fMRI data for
denoising. Since global signal regression has drawn concerns
regarding the potential for spurious negative connectivity,43,62

global signal regression was not applied in the present study. We
also compared the maximal framewise displacement value
between cLBP patients and HCs and did not find any significant
difference.47 Detailed results can be found in supplementary
materials (available at http://links.lww.com/PAIN/A748).

2.5. Group independent component analysis and functional
connectivity construction

The fMRI data were parcellated using spatial group ICA with the
GIFT toolbox (Medical Image Analysis Lab, Albuquerque, NM),
and the whole-brain connectivity matrix was constructed based
on the time courses (TCs) of intrinsic connectivity networks
(ICNs). The procedure of performing group ICA and identifying
ICNs are shown in Figure 1.1. In the first step, principal
component analysis was applied to reduce the subject-specific
data into 100 principle components, which preserved more than
99% of the variance. Next, reduced data of all subjects were
concatenated across time and decomposed into 80 independent
components (ICs) using the infomax algorithm. The infomax ICA
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algorithm was repeated 10 times in ICASSO (a software package
incorporated in GIFT toolbox for performing ICA),28 and the best
run was selected to ensure estimation stability. After estimating
the aggregate spatial maps (SMs), spatiotemporal regression
back reconstruction was performed to obtain the subject-specific
SMs and TCs.

After obtaining the SMs and TCs of all subjects, we calculated 1-
sample t test maps for each SM across subjects and computed the
mean power spectra of the corresponding TC. A set of ICs were
identified as ICNs if peak activation fell on gray matter and showed
overlap with known brain regions in the DMN, SMN, SN, and CEN
and exhibited primarily low-frequency power. This selection pro-
cedure resulted in 30 ICNs out of the 80 ICs obtained. Compared to
defining regions of interest based on anatomical brain atlases, the
ICNs identified by group ICAare functionally homogeneous andmay
be better at capturing individual differences of real functional
boundaries in the brain.14 The following additional postprocessing
steps were performed on the TCs of selected ICNs: (1) detrending
linear, quadratic, and cubic trends; (2) conducting multiple
regressions of the 6 realignment parameters and their temporal
derivatives; (3) despiking detected outliers; and (4) band-pass
filtering with a cut-off frequency between 0.01 and 0.15 Hz.

The FC matrix was constructed based on the TCs of ICNs by
calculating pairwise Pearson correlations among TCs and z-trans-
forming (Fig. 1.2). Since (1) the connectivitymatrixwas symmetric, the
lower andupperdiagonal connectivity profileswere identical and (2) all
diagonal values equaled 1 (i5 j in Fig. 1.2), we had 435 (303 29/2)
rsFCs across 4 networks for further investigation.

2.6. Topological analysis

After obtaining the functional connectivity matrices, graph theory
approaches were applied to examine the abnormal topological

organization of functional networks in cLBP patients (Fig. 1.3).
We defined 30 ICNs as nodes and the connectivity between each
ICN as edges.50 The analyses were performed using GRETNA
toolbox (http://www.nitrc.org/projects/gretna).66 Similar to pre-
vious studies,30,66,71 we first applied a sparsity threshold S (the
ratio of the number of actual edges to the maximum possible
number of edges in a network) to all connectivity matrices for 0.1
to 0.5 with a step of 0.05. After that, connectivity matrices were
compared with random networks (100 times) to test whether they
were configured with significantly nonrandom topology. This
procedure resulted in an undirected and unweighted adjacency
matrix for each subject (edges were designated as 1 if an edge
between node i and node j was larger than the threshold we
selected and 0 if it was smaller than the threshold; absolute values
of connectivity were considered).

For brain networks at each sparsity threshold, we calculated 3
nodal metrics: degree, efficiency, and betweenness, as regional
network measures. A detailed review of uses and interpretations
of these measures can be found in Ref. 50. In brief, the degree
reflects the number of connections of a node within a network;
efficiency measures the information propagation ability of the
node with the rest of the nodes in the network; and betweenness
captures the influence of a node over information flow between all
other nodes in the network. All these 3 measures have been
widely applied to study dysfunctional brain networks in
patients.30,55,71 To avoid the specific selection of a threshold,
we applied an area under the curve (AUC) approach, which is
sensitive at detecting topological alteration of brain dysfunc-
tions.31,71 For each measure, the AUC was calculated within the
sparsity range and compared between cLBP patients and HCs
using a 2-sample t test (control covariates: age, gender, and BDI).
Results were corrected using false discovery rate (FDR) with
a corrected significance level of PFDR ,0.05.

Figure 1. Analysis flowchart to study abnormal functional connectivity in cLBP patients. Five major steps were included: (1) perform group independent
component analysis (ICA) and select intrinsic connectivity networks (ICNs); (2) construct connectivity matrix; (3) topological analysis; (4) multivariate pattern
analysis; and (5) classify cLBP and HCs. cLBP, chronic low back pain; HC, healthy control; LBP, low back pain.
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2.7. Multivariate pattern analysis

To study abnormal rsFC across 4 networks in cLBP patients, we
built a multivariate linear model with rsFC as an independent
variable and group label (1 for cLBP and 0 for HC) as a dependent
variable (Fig. 1.4). This model has been widely used in fMRI
studies to identify brain patterns related to behavior and
disease.15,39,59,64,65 The model was decoded using a support
vector classifier (SVC) implemented by LIBSVM,18 resulting in
a pattern of classification weights across all rsFCs,57,58 and the
significance of each rsFC in discriminating cLBP from HCs was
assessed with bootstrap testing (see Statistical analyses for
details).

To examine the extent to which rsFC captured functional
abnormalities in patients’ brains, we also used all rsFCs as
features to classify 2 cohorts of participants based on 5-fold
cross-validation, which ensures separation of training and testing
samples.18 In training, we fed training samples and their
corresponding labels to the classifier, and the result was the
classification weights for all features and a decision boundary for
separating the 2 cohorts. In testing, the pattern of classification
weights and decision boundary were applied to the test samples,
yielding binary labels that constituted the predicted class for
those samples (Fig. 1.5). Accuracy, sensitivity, specificity, and
area under the receiver operating characteristics curve were used
to illustrate classification performance. We used permutation
tests to statistically assess the performance of classification (see
Statistical analyses for details).

2.8. Correlation analysis

In topological analysis and MVPA, we found distinct abnormalities
in the ICN of medial prefrontal cortex/rostral anterior cingulate
cortex (mPFC/rACC) and its rsFCs for cLBP patients compared to
HCs (see Results for details), indicating that themPFC/rACCmight
be a central hub in the abnormal rsFC of cLBP patients. Given the
important role of mPFC/rACC in pathophysiology of chronic
pain8,10,37 and pain modulation,34,68 we applied correlation
analysis between mPFC/rACC rsFCs and clinical symptoms.

Correlation significance was corrected for multiple comparisons
between abnormal mPFC/rACC rsFCs (N 5 14, see Results for
details) and each of the clinical symptoms (pain severity and
duration) using PFDR , 0.05. In addition, to further understand the

relationship between abnormal rsFC and the affective, emotional,
and sensory aspects of chronic pain, we calculated the correlation
between abnormal rsFCs and PROMIS subscores (see Clinical
assessments for all 7 subscores). Results were corrected for
multiple comparisons between abnormal mPFC rsFCs (N 5 14)
and each of the PROMIS subscores using PFDR , 0.05.

2.9. Independent validation

We proposed that if rsFC across the 4 networks captured
functional brain abnormalities in cLBP patients, the SVCwould be
able to discriminate cLBP from HCs in an independent dataset.
The SVC trained with the first dataset was applied to the
independent sample of cLBP patients and HCs with no further
model fitting. In addition, we calculated the correlation between
abnormal rsFCs and clinical symptoms in the independent
sample to test the validity of findings from the first dataset. The
test was focused on the abnormal rsFCs showing a significant
relationship with clinical symptoms in the first dataset.

2.10. Statistical analyses

To threshold and select the most discriminative rsFC, we
constructed 1000 bootstrap samples (with replacement) con-
sisting of paired rsFCs and class labels and ran SVC on each. A 1-
sample t test was performed for each rsFC based on the
proportion of weights below or above zero and subjected to
multiple comparisons.

In permutation testing, we randomly permuted data labels prior
to training. Cross-validation was performed on the permuted
dataset, and the procedure was repeated 10,000 times. If the
classifier trained on real data labels had an accuracy that
exceeded the 95% confidence interval generated from the
accuracies of the classifiers trained on randomly relabeled data
labels, it was considered to be performing well.

3. Results

3.1. Demographics of chronic low back pain and
healthy controls

The first cohort consisted of 50 cLBP patients (31 females; age
39.5 6 13.0 years, mean 6 SD) and 44 HCs (19 females; age

Table 1

Demographics and clinical characteristics of cLBP patients and HCs in 2 datasets.

cLBP (dataset 1) HC (dataset 1) cLBP (dataset 2) HC (dataset 2)

Demographics

No. subjects 50 44 30 30

Age 39.5 6 13.0 36.9 6 8.2 35.0 6 9.0 34.2 6 1.5

Gender 31 females (60%) 19 females (43%) 14 females (47%) 16 females (53%)

BDI 8.0 6 7.4 1.0 6 1.8 4.1 6 4.0 1.1 6 1.4

Clinical symptoms

Pain severity score 5.6 6 1.7 5.3 6 1.6

Pain intensity 44.5 6 19.7 32.6 6 21.8

PROMIS pain interference 61.3 6 5.6 59.2 6 5.4

PROMIS physical function 33.2 6 4.3 32.2 6 3.9

PROMIS social disability 46.1 6 7.1 46.4 6 8.6

PROMIS sleep disturbance 51.6 6 3.4 51.0 6 3.0

PROMIS fatigue 53.0 6 8.7 53.5 6 9.4

PROMIS anxiety 51.4 6 7.9 51.3 6 8.7

PROMIS depression 48.2 6 8.1 45.6 6 6.4

BDI, Beck Depression Inventory; cLBP, chronic low back pain; HC, healthy control.
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36.9 6 8.2 years). A 2-sample t test and x2 test showed no
significant differences in age or gender (P 5 0.26 and P 5 0.07,
respectively). The validation cohort consisted of 30 cLBP patients
(14 females; age 35.06 9.0 years) and 30 HCs (14 females; age
34.2 6 1.5 years). Statistical tests showed no significant
differences in age (P 5 0.63) or gender (P 5 0.61). The clinical
characteristics of cLBP patients are summarized in Table 1. In this
study, we used pain intensity to measure patients’ pain perception
before the MRI scan, whereas pain duration, pain severity score,
and PROMIS subscores were used to evaluate patients’ daily
experience beyond pain perception. Higher scores of pain
interference, sleep disturbance, fatigue, anxiety, and depression
and lower scores of physical function and social function indicated

stronger disturbances in pain and related symptoms. According to
the guideline and manual of the PROMIS system, 50 is the mean
and 10 is the SD for the US general population. Therefore, our
cLBP patients only exhibited significantly comorbid symptoms in
pain interference (61.3 6 5.6) and physical function (33.2 6 4.3).
One patient in the first cohort was not included in the fMRI analyses
due to excessive head movement.

3.2. Spatial group independent component analysis and
selected intrinsic connectivity networks

A total of 30 ICs were identified as ICNs since their activation
peaks fell on gray matter and had low spatial overlap with
known vascular, ventricular, motion, and other artifacts (Fig. 2).

Figure 2. Spatial maps of the 30 selected ICNs, sorted into 4 networks. Each color in the spatial maps corresponds to a different ICN. ICN, intrinsic connectivity
network.
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These 30 ICNs were categorized into 4 resting-state networks,
the DMN, SMN, SN, and CEN, based on their functional
meanings and anatomical information. A detailed spatial map of
each ICN is shown in supplementary Figure S1 (available at
http://links.lww.com/PAIN/A748). Component labels and peak
coordinates are provided in supplementary Table S1 (available
at http://links.lww.com/PAIN/A748).

3.3. Abnormal topological property

In the first cohort of subjects, we observed significantly abnormal FCs
across4networks incLBPpatients (Fig. 3A).Nodedegree, efficiency,
and betweenness were significantly higher in the ICN of mPFC/rACC
(a conjunction analysis, which compared the ICN with Automated
Anatomical Labeling atlas, showed that 53.6% of the ICN were
located in mPFC, 33.2% of the ICN were located in rACC, and the
peak coordinate [x527 mm, y5 41 mm, z5214 mm] of the ICN
located inmPFC) for cLBP patients compared to HCs, indicating that
themPFC/rACCmight be a central hub in the abnormal rsFCof cLBP
patients. Other regions did not show a significant difference in all 3
metrics between cLBP patients and HCs. Detailed topological results
of all 30 regions can be found in supplementary Table S2 (available at
http://links.lww.com/PAIN/A748).

3.4. Abnormal medial prefrontal cortex/rostral anterior
cingulate cortex connectivity in chronic low back pain

Figure 3B summarizes abnormal mPFC/rACC connectivity in
cLBP patients. The rsFCs between the mPFC/rACC and posterior
DMN regions (posterior cingulate cortex [PCC] and angular gyrus
[AG]) were decreased in cLBP patients, while mPFC/rACC FCs

with theSMN (postcentral gyrus [PoCG], superior parietal lobe, and
paracentral lobe) and SN (putamen, insula, anterior cingulate
cortex [ACC], and caudate) were increased. Connections between
themPFC/rACC and precentral gyrus and medial frontal gyri in the
CEN were decreased, whereas the connection between the
mPFC/rACC and middle frontal gyrus was increased. Correlation
analyses (adjusted for age, gender, and BDI score; Fig. 3C)
showed that rsFC between the mPFC/rACC and ACC was
correlated with duration of cLBP (r 5 20.32, PFDR 5 0.03) and
rsFC between the mPFC/rACC and PCC/AG was correlated with
pain severity (r 5 20.33, PFDR 5 0.02). It is worth noting that
abnormal rsFCs in cLBP patients were not correlated with their
pain intensity.

The associations between abnormal rsFC and PROMIS sub-
scores are shown in Figure 4A. Among all physical, mental, and
social disability scores, pain interference was correlated with rsFC
between the mPFC/rACC and PoCG (r 5 20.43, PFDR 5 0.002).
Sleep disturbance was correlated with rsFC between the mPFC/
rACC and caudate (r 520.37, PFDR 5 0.009), but in general, the
sleep score (51.66 3.4) indicated that cLBP patients did not have
sleep disorders.

In the validationdataset (Figs. 4Band5),wealso founddecreased
mPFC/rACC rsFC with the DMN (PCC, AG) and CEN (precentral
gyrus and medial frontal gyri) and increased mPFC/rACC FC with
the SN (putamen, ACC, and caudate). These results are congruent
with findings from the first dataset. In particular, we observed
significant correlations between mPFC/rACC-ACC rsFC and dura-
tion of cLBP (r520.37, P5 0.04) and betweenmPFC/rACC-PCC/
AG rsFC and pain severity (r520.35, P5 0.04). We also validated
the significant relationship between the abnormal mPFC/rACC-
PoCG rsFC and pain interference (r520.41, P5 0.02) and a trend

Figure 3. Abnormal rsFC in cLBP patients. (A) Multivariate pattern analysis (MVPA) identified abnormal FCs across 4 networks. A graph-theory-based measure
showed that cLBP patients had significantly higher mPFC/rACC node degree, efficiency, and betweenness than HCs. (B) Abnormal mPFC/rACC FCs with other
regions in cLBP patients. We found decreased mPFC/rACC-DMN connectivity and increased mPFC/rACC-SMN and mPFC/rACC-SN connectivity in cLBP
patients. (C) The mPFC/rACC-ACC rsFC was correlated with the duration of cLBP, and mPFC/rACC-PCC/AG rsFC was correlated with the severity of cLBP.
ACC, anterior cingulate cortex; AG, angular gyrus; CEN, central executive network; cLBP, chronic low back pain; DMN, default mode network; FC, functional
connectivity; HC, healthy control; MFG, medial frontal gyri; MiFG, middle frontal gyrus; mPFC/rACC, medial prefrontal cortex/rostral ACC; ParaCL, paracentral
gyrus; PCC, posterior cingulate cortex; PoCG, postcentral gyrus; PreCG, precentral gyrus; rsFC, resting-state functional connectivity; SMN, sensorimotor
network; SN, salience network; SPL, superior parietal lobe; Red lines and blue lines in (B) represent increased and decreased rsFC in cLBP patients.
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between the abnormal mPFC/rACC-caudate rsFC and sleep
disturbance (r520.32, P5 0.08).

3.5. Internal cross-validated classification of chronic low
back pain and healthy control

In the 5-fold cross-validation test, rsFC across the 4 networks
discriminated cLBP from HCs and obtained a classification
accuracy of 91.4% (P , 0.001; Fig. 6A) with a sensitivity of
93.2% and a specificity of 89.8%. A receiver operating
characteristics curve was produced to further estimate the
performance of the classification. The AUC equaled 0.96,
indicating a satisfactory classification ability (Fig. 6B). The
classification weights, indexed by the t values (from bootstrap
testing) for all rsFCs, are given in supplementary Figure S5
(available at http://links.lww.com/PAIN/A748).

3.6. Externally-validated classification of chronic low back
pain and healthy control

The SVC obtained from the first dataset was used to
discriminate cLBP patients from HCs in an independent
dataset, obtaining an accuracy of 78.3% (P 5 0.001; Fig. 6C)
with a sensitivity of 80.0% and a specificity of 76.7%. The AUC
was 0.81 (Fig. 6D).

4. Discussion

In this study, we investigated abnormal rsFC across 4 resting-
state networks in cLBP patients and studied the relationships
between abnormal rsFCs and clinical scores in cLBP. Using
graph theory and MVPA, we found that (1) the mPFC/rACC is the
key node in the abnormal functional brain network of cLBP
patients; (2) the rsFCs between the mPFC/rACC and other
regions in the DMN were decreased, while mPF/rACC-SMN and
mPFC/rACC-SN connectivities were increased; (3) abnormal
mPFC/rACC rsFCs were associated with duration, pain severity,
and pain interference of cLBP but not correlated with pain
intensity; and (4) the rsFCs in these 4 networks were able to
achieve a cross-validation accuracy of 91% and an independent
validation accuracy of 78% in discriminating cLBP patients from
HCs. Thus, we believe that the mPFC/rACC may serve as an
important region for linking the DMN to the other 3 networks for
cLBP patients, and we found that disrupted FCs were correlated
with daily experience but not with pain perception.

Brain regions integrate and distribute information in powerful
ways through several interconnected networks. These regions
can be defined as nodes with many edges, which places them in
central positions for facilitating information transfer in networks.
Previous studies have found well-connected nodes (high-degree
nodes) in the DMN, which is a collection of brain regions that are
implicated in various “high-level” cognitive processes.13,48 In our

Figure 4. Association between abnormal rsFC and PROMIS subscores. (A) Results from the first cohort. The rsFC between the mPFC/rACC and PoCG was
significantly correlatedwith pain interference, and rsFCbetween themPFC/rACCand caudate was significantly correlatedwith sleep disturbance. (B) Results from
the independent cohort. The rsFC between the mPFC/rACC and PoCG was significantly correlated with pain interference, while rsFC between the mPFC/rACC
and caudate showed a nonsignificant trend toward correlating with sleep disturbance. FC, functional connectivity; mPFC/rACC, medial prefrontal cortex/rostral
anterior cingulate cortex; PoCG, postcentral gyrus; rsFC, resting-state functional connectivity.
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study, the ICN of mPFC/rACC had a significantly higher node
degree, efficiency, and betweenness in cLBP patients than in
HCs, highlighting its potential role in the functional reorganization
of brain networks in chronic pain. The mPFC is a region involving
multiple brain functions, such as pain modulation and emotional
evaluation.9,68 Baliki et al. reported an enhanced high-frequency
fluctuation of fMRI signals in cLBP patients primarily mapped to
the mPFC and brain regions within the DMN, and chronic pain
patients showed decreased connectivity of the mPFC with the
posterior parts of the DMN8,10 but increased connectivity
between mPFC and nucleus accumbens in the reward system.11

Similar findings have also been reported in animal studies,
indicating the important role of the prefrontal cortex and its
projections to the nucleus accumbens in regulating affective and
motivational components of pain.19,38,49 In line with these
studies, we found that abnormal mPFC-PCC/AG connectivity
was correlated with the severity (bothersomeness) of chronic pain
but not pain intensity, further demonstrating that cLBP may
modulate brain functions beyond the pain system itself in ways
that may be maladaptive, affecting patients’ daily experience.

We found that cLBP patients showed higher mPFC-SN
connectivity compared to HCs. The SN detects relevant stimuli
from the environment and coordinates other brain networks to
generate behavioral responses,60 while the DMN is involved in
higher-level thought. In HCs, the activity between the DMN and

SN is anticorrelated. The SN is active and the DMN is
suppressed when attention is engaged, while the reverse is
true when the brain is engaged in internal thought.24 Unlike
acute pain, however, in which attention to sudden, external pain
activates the SN and suppresses the DMN, chronic pain may
cause the patient to think more about their constant pain,
activating the DMN. Thus, disruption in DMN-SN FC can be
found in several chronic pain disorders.9,27 In our study, we
found that connectivity between the mPFC and ACC in the SN
was correlated with the duration of cLBP, suggesting that DMN-
SN abnormalities may not be specific to pain. Rather, the
continuous experience of salient symptoms may become
ingrained in internal thought and alter attention. In addition,
we found increased mPFC-SMN connectivity, indicating that
communication between the mPFC and sensory-related
regions was also altered in cLBP patients.

It is interesting to note that abnormal rsFCs in cLBP patients
were associated with the severity of chronic pain and pain
interference, but not with pain intensity. These results were
consistent with a previous study, suggesting that chronic pain
encompasses more than just the feeling of pain,9 relating to
symptoms that significantly diminish quality of life (eg, physical
disability and pain interference).5

There are several potential confounding variables to address.
First, previous studies have suggested that cLBP patients have

Figure 5. Abnormal mPFC/rACC rsFC in cLBP from the validation data. (A) We found decreased mPFC/rACC-DMN and mPFC/rACC-CEN connectivity and
increased mPFC/rACC-SN connectivity in cLBP patients. (B) mPFC/rACC-ACC rsFC was correlated with the duration of cLBP, and mPFC/rACC-PCC/AG rsFC
was correlated with the severity of cLBP. AG, angular gyrus; CEN, central executive network; cLBP, chronic low back pain; DMN, default mode network; MFG,
medial frontal gyri; mPFC/rACC, medial prefrontal cortex/rostral anterior cingulate cortex; PCC, posterior cingulate cortex; rsFC, resting-state functional
connectivity; SFG, superior frontal gyrus; SN, salience network.
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a high prevalence of depression, and depression may induce
abnormal FC between the mPFC and DMN. In our study, cLBP
patients had PROMIS-depression and BDI scores within the
normal range. Since PROMIS scores were not recorded for HCs,
we includedBDI scores as a covariate in between-group analyses
(eg, MVPA and topological analysis) and within-group analysis
(eg, correlation between abnormal rsFC and cLBP pain severity).
We also performed a correlation analysis between abnormal rsFC
and PROMIS-depression score and did not find any significant
relationship. These results at least partly minimized the effects of
depression. Second, cLBP patients may have different levels of
vigilance compared to HCs. Unlike other artifacts (eg, noise and
head motion), rsFC changes related to changes in vigilance are
physiologically meaningful. PROMIS-sleep disturbance scores
showed that cLBP patients overall did not have sleeping
difficulties during their lives. We also examined the level of
vigilance between the 2 groups of subjects usingwell-established
rsFC signatures of vigilance,53 and results showed no systematic
differences between cLBP and HCs (supplementary material,
available at http://links.lww.com/PAIN/A748). Future studies
should include cardiac, respiratory, or eye-tracking data3 to
further characterize the pathophysiology of cLBP patients.

Multivariate pattern analysis and machine learning techniques
have been widely applied in translational neuroimaging studies to
provide a basis for identifying neuropathological features of
different diseases and to show potential clinical utility beyond
current clinical diagnostic categories.1,6,20,29,45,46,67,70 For in-
stance, investigators have applied this method to identify brain
signatures for neurological and psychiatric diseases, such as
Alzheimer disease and dementia,32 Parkinson disease,54 major
depression,70 schizophrenia,51 and attention deficit hyperactivity
disorder.25 Most of these studies have focused on identifying
brain signatures for discriminating patients from HCs and
consequently establishing a meaningful neurophysiological basis

for disorders of interest. In a previous study with a similar sample
size to our study,61 investigators applied an SVM model using
abnormal gray matter density to classify cLBP patients (n 5 47)
and HCs (n 5 47), achieving an accuracy of 76%. In our study,
using resting-state fMRI data, we achieved an accuracy of 91%,
which was validated with an independent dataset with 78%
accuracy. We therefore demonstrated the feasibility and reliability
of our proposed model for identifying abnormal functional and
structural patterns of the brain processing spontaneous pain.

There are several limitations to this study. First, all data included in
the analysis used the same MRI scanner and population. Future
studies are needed to further clarify the roles of different variables
such as MRI scanner and parameters.2 Second, the relationship
between functional and anatomical abnormalities in cLBP patients is
still not clear. Further investigations using multi-modality fusion
techniquesmayprovide insight. Third, itwouldbe interesting to apply
the model to other types of chronic pain disorders such as
fibromyalgia and migraine to study the specific and shared neural
mechanisms of different chronic pain conditions.

In conclusion, we found abnormal FCs between the mPFC and
other brain regions across the DMN, SMN, SN, and CEN in cLBP
patients. The abnormal FCs were correlated with pain severity, pain
interference, and sleep disturbance in patients. Using an MVPA
approach, we were able to discriminate cLBP patients from
matched HCs with more than 91% accuracy in the first cohort and
78%accuracy in the validation cohort. The identification of abnormal
functional dynamics in cLBP patients may lead to a better
understanding of the disorder, better-targeted treatment, and the
development of diagnostic and prognostic indicators.
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